Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Without external chiral intervention, it is a challenge to form homochirality from achiral molecules with conformational flexibility. We here report on a rational strategy that uses multivalent noncovalent interactions to clamp the molecular conformations of achiral D-A molecules. These interactions overcome the otherwise dominant dipole-dipole interactions and thus disfavor their symmetric antiparallel stacking. It in turn facilitates parallel packing, leading to spontaneous symmetry breaking during crystallization and thus the formation of homochiral conglomerates. When this emergent homochirality is coupled with optical gain characteristics of the molecules, the homochiral crystals are explored as excellent circularly polarized micro-lasers with low lasing threshold (16.4 μJ cm ) and high dissymmetry factor g (0.9). This study therefore provides a facile design strategy for supramolecular chiral materials and active laser ones without the necessity of intrinsic chiral element.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202214211 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!