The proper glycosylation of glycoproteins is important for their structure and function. This is an especially important consideration when choosing a platform to express recombinant glycoproteins destined for therapeutic use. Chinese hamster ovary (CHO) cells have been the choice expression platform for their ability to produce recombinant glycoproteins with glycosylation profiles similar to those observed in humans. However, consistency with glycosylation has been noted as problematic, and sialylation, an important modification in human glycoproteins, has not been achieved to an acceptable degree in CHO cells. Plant biotechnology and glycoengineering has now made it possible to produce therapeutic recombinant glycoproteins in plants with glycosylation profiles observed in humans, including sialylation. Furthermore, the glycosylation profiles of recombinant therapeutic glycoproteins produced in plants are homogenous and consistently reproducible. Here, entirely via transient expression, two therapeutic monoclonal antibodies are produced in glycoengineered Nicotiana benthamiana plants that carry human glycosylation profiles including sialylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2835-5_17 | DOI Listing |
Viruses
January 2025
Département de Virologie, Institut Pasteur de Dakar, Dakar BP 220, Senegal.
Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.
View Article and Find Full Text PDFJ Clin Med
January 2025
Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany.
: Neuroblastoma is a highly aggressive pediatric cancer that arises from immature nerve cells and exhibits a broad spectrum of clinical presentations. While low- and intermediate-risk neuroblastomas often have favorable outcomes, high-risk neuroblastomas are associated with poor prognosis and significant treatment challenges. The complex genetic networks driving these high-risk cases remain poorly understood.
View Article and Find Full Text PDFJ Clin Med
January 2025
Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary.
: Subarachnoid hemorrhage is a serious condition caused by ruptured intracranial aneurysms, resulting in severe disability mainly in young adults. Cerebral vasospasm is one of the most common complication of subarachnoid hemorrhage; thus, active prevention is key to improve the prognosis. The glycosylation of proteins is a critical quality attribute which is reportedly altered in patients diagnosed with acute ischemic stroke.
View Article and Find Full Text PDFMicroorganisms
January 2025
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City 04510, Mexico.
The primary mode of transmission for Chagas disease is vector-borne transmission, spread by hematophagous insects of the subfamily. In Mexico, the triatomine is particularly significant in the transmission of . This study focused on analyzing protein expression and modifications by glycosylation in different regions of the digestive tract of fifth-instar nymphs of .
View Article and Find Full Text PDFNat Commun
January 2025
Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.
Cellular glycosylation is crucial for cell recognition, signal transduction, and the development of various diseases, especially in tumor initiation, progression, and metastasis. Current glycosylation profiling methods normally involve laborious sample processing and labeling and lack in-situ quantitative analysis. Here, we present a direct optical method to investigate and quantify the glycan expression on single cells based on lectin-glycan kinetic quantification with plasmonic imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!