A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Authentication of fish oil (omega-3) supplements using class-oriented chemometrics and comprehensive two-dimensional gas chromatography coupled to mass spectrometry. | LitMetric

Food supplement authentication is an important concern worldwide due to the ascending consumption related to health benefits and its lack of effective regulation in underdeveloped countries, making it a target of fraudulent activities. In this context, this study evaluated fish oil supplements by comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC-MS) to obtain fingerprints, which were used to build predictive models for automated authentication of the most popular products sold in Brazil. The authentication process relied on a one-class classifier model using data-driven soft independent modeling of class analogy (DD-SIMCA). The output of the model was a binary classifier: certified IFOS fish oils and non-certified ones - regardless of the source of adulteration. The compositional analysis showed a significant variation in the samples, which validated the need for reliable statistical models. The DD-SIMCA algorithm is still incipient in GC×GC studies, but it proved to be an excellent tool for authenticity purposes, achieving a chemometric model with a sensitivity of 100%, specificity of 98.6%, and accuracy of 99.0% for fish oil authentication. Finally, orthogonalized partial least square discriminant analysis (OPLS-DA) was used to identify the features that distinguished the groups, which ascertained the results of the DD-SIMCA model that IFOS-certified oils are positively correlated to omega-3 fatty acids, including eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-022-04428-2DOI Listing

Publication Analysis

Top Keywords

fish oil
12
comprehensive two-dimensional
8
two-dimensional gas
8
gas chromatography
8
chromatography coupled
8
coupled mass
8
mass spectrometry
8
authentication
5
authentication fish
4
oil omega-3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!