The balance between degradability and drug release kinetics is a major challenge for the development of drug delivery systems. Here we develop hierarchically structured nanoparticles comprising multiple noncontact silica shells using an amorphous calcium carbonate template. The system could be degraded in a sequential fashion on account of the molecularly engineered multishelled structures. The hydrolysis rate of drug-containing cores is inversely correlated with the nanoparticle concentration due to the shielding effect of the hierarchical nanostructure and could be exploited to regulate the release kinetics. Specifically, multishelled nanospheres show a low drug release rate with high doses that increases steadily as the concentration decreases due to continuous degradation, thus stabilizing the local drug concentration for effective tumor therapy. Moreover, the nanoparticles could be eventually degraded completely, which may reduce their health risks. This kind of hierarchically structured silica-based nanoparticle could serve as a sustainable drug depot and provides a new avenue for tumor treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c04229 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
One of the prevailing trends in contemporary agriculture is the application of biological control. Nevertheless, several reports suggest that biocontrol bacteria exhibit poor survival rates in host plants. Consequently, the concept of shielding biological control agents by encapsulating them in outer coatings has gained popularity.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Psychiatry, the Fifth People's Hospital of Luoyang, Luoyang City, Henan Province.
To explore the effect of lithium carbonate combined with olanzapine on glucose and lipid metabolism, as well as gender differences in treating bipolar disorder (BD). 110 BD patients admitted to the Fifth People's Hospital of Luoyang from February 2022 to January 2024 were retrospectively included in the study. Patients were categorized into two groups based on treatment: The single group (lithium carbonate, n = 50) and the coalition group (lithium carbonate + olanzapine, n=60).
View Article and Find Full Text PDFMol Ther
January 2025
Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School; 30625 Hannover, NI, Germany. Electronic address:
Antibody-mediated rejection (AMR) remains a major complication after solid organ transplantation (SOT). Current treatment options are inefficient and result in drastic impairment of the general immunity. To selectively eliminate responsible alloreactive B cells characterized by anti-donor-HLA B-cell receptors (BCRs), we generated T cells overcoming rejection by antibodies (CORA-Ts) engineered with a novel chimeric receptor comprising a truncated donor-HLA molecule as antigen recognition domain.
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors.
View Article and Find Full Text PDFBackground: FT596 is an induced pluripotent stem-cell (iPSC)-derived chimeric antigen receptor (CAR) natural killer (NK) cell therapy with three antitumour modalities: a CD19 CAR; a high-affinity, non-cleavable CD16 Fc receptor; and interleukin-15-interleukin-15 receptor fusion. In this study, we aimed to determine the recommended phase 2 dose (RP2D) and evaluate the safety and tolerability of FT596 as monotherapy and in combination with rituximab. We also aimed to evaluate the antitumour activity and characterise the pharmacokinetics of FT596 as monotherapy and in combination with rituximab.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!