Metabolomics, the large-scale study of metabolites, has significant appeal as a source of information for metabolic modeling and other scientific applications. One common approach for measuring metabolomics data is gas chromatography-mass spectrometry (GC-MS). However, GC-MS metabolomics data are typically reported as relative abundances, precluding their use with approaches and tools where absolute concentrations are necessary. While chemical standards can be used to help provide quantification, their use is time-consuming, expensive, or even impossible due to their limited availability. The ability to infer absolute concentrations from GC-MS metabolomics data without chemical standards would have significant value. We hypothesized that when analyzing time-course metabolomics datasets, the mass balances of metabolism and other biological information could provide sufficient information towards inference of absolute concentrations. To demonstrate this, we developed and characterized MetaboPAC, a computational framework that uses two approaches-one based on kinetic equations and another using biological heuristics-to predict the most likely response factors that allow translation between relative abundances and absolute concentrations. When used to analyze noiseless synthetic data generated from multiple types of kinetic rate laws, MetaboPAC performs significantly better than negative control approaches when 20% of kinetic terms are known . Under conditions of lower sampling frequency and high noise, MetaboPAC is still able to provide significant inference of concentrations in 3 of 4 models studied. This provides a starting point for leveraging biological knowledge to extract concentration information from time-course intracellular GC-MS metabolomics datasets, particularly for systems that are well-studied and have partially known kinetic structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974747PMC
http://dx.doi.org/10.1039/d2mo00168cDOI Listing

Publication Analysis

Top Keywords

absolute concentrations
20
gc-ms metabolomics
16
metabolomics data
16
relative abundances
8
chemical standards
8
metabolomics datasets
8
metabolomics
7
concentrations
6
gc-ms
5
data
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!