A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Balanced Steady-State Free Precession Cine MR Imaging in the Presence of Cardiac Devices: Value of Interleaved Radial Linear Combination Acquisition With Partial Dephasing. | LitMetric

Background: Balanced steady-state free precession (bSSFP) is important in cardiac MRI but suffers from off-resonance artifacts. The interpretation-limiting artifacts in patients with cardiac implants remain an unsolved issue.

Purpose: To develop an interleaved radial linear combination bSSFP (lcSSFP) method with partial dephasing (PD) for improved cardiac cine imaging when implanted cardiovascular devices are present.

Study Type: Prospective.

Phantom And Subjects: Flow phantom adjacent to a pacemaker and 10 healthy volunteers (mean age ± standard deviation: 31.9 ± 2.9 years, 4 females) with a cardioverter-defibrillator (ICD) positioned extracorporeally at the left chest in the prepectoral region.

Field Strength/sequence: A 3-T, 1) Cartesian bSSFP, 2) Cartesian gradient echo (GRE), 3) Cartesian lcSSFP, and 4) radial lcSSFP cine sequences.

Assessment: Flow artifacts mitigation using PD was validated with phantom experiments. Undersampled radial lcSSFP with interleaving across phase-cyclings and cardiac phases (RLC-SSFP), combined with PD, was then employed for achieving improved quality of cine images from left ventricular short-axis view. The image quality in the presence of cardiac devices was qualitatively assessed by three independent raters (1 = worst, 5 = best), regarding five criteria (banding artifacts, streak artifacts, flow artifacts, cavity visibility, and overall image quality).

Statistical Tests: Wilcoxon rank-sum test for the five criteria between Cartesian bSSFP cine and RLC-SSFP with PD. Fleiss kappa test for inter-reader agreement. A P value < 0.05 was considered statistically significant.

Results: Based on simulations and phantom experiments, 60 projections per phase cycling and 1/6 PD were chosen. The in vivo experiments demonstrated significantly reduced banding artifacts (4.8 ± 0.4 vs. 2.7 ± 0.7), fewer streak artifacts (3.7 ± 0.6 vs. 2.6 ± 0.7) and flow artifacts (4.4 ± 0.4 vs. 3.7 ± 0.6), therefore improved cavity visibility (4.1 ± 0.4 vs. 2.9 ± 0.9) and overall quality (4.0 ± 0.4 vs. 2.7 ± 0.7).

Data Conclusion: RLC-SSFP method with PD may improve cine image quality in subjects with cardiac devices.

Evidence Level: 2.

Technical Efficacy: Stage 1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238270PMC
http://dx.doi.org/10.1002/jmri.28528DOI Listing

Publication Analysis

Top Keywords

balanced steady-state
8
steady-state free
8
free precession
8
cine imaging
8
presence cardiac
8
cardiac devices
8
interleaved radial
8
radial linear
8
linear combination
8
partial dephasing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!