Forest restoration in a time of fire: perspectives from tall, wet eucalypt forests subject to stand-replacing wildfires.

Philos Trans R Soc Lond B Biol Sci

Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia.

Published: January 2023

Wildfires have the potential to add considerably to the already significant challenge of achieving effective forest restoration in the UN Decade on Ecosystem Restoration. While fire can sometimes promote forest restoration (e.g. by creating otherwise rare, early successional habitats), it can thwart it in others (e.g. by depleting key patch types and stand structures). Here we outline key considerations in facilitating restoration of some tall wet temperate forest ecosystems and some boreal forest ecosystems where the typical fire regime is rare high-severity stand-replacing fire. Some of these ecosystems are experiencing altered fire regimes such as increased fire extent, severity and/or frequency. Achieving good restoration outcomes in such ecosystems demands understanding fire regimes and their impacts on vegetation and other elements of biodiversity and then selecting ecosystem-appropriate management interventions. Potential actions range from doing nothing (as the ecosystem already maintains full post-fire regenerative capacity) to interventions prior to a conflagration like prescribed burning to limit the risks of high-severity fire, excluding activities that impair post-fire recovery (e.g. post-fire logging), and artificial seeding where natural regeneration fails. The most ecologically effective actions will be ecosystem-specific and context-specific and informed by knowledge of the ecosystem in question (such as plant life-history attributes) and inter-relationships with attributes like vegetation condition at the time it is burnt (e.g. young versus old forest). This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661950PMC
http://dx.doi.org/10.1098/rstb.2021.0082DOI Listing

Publication Analysis

Top Keywords

forest restoration
12
fire
8
tall wet
8
decade ecosystem
8
forest ecosystems
8
fire regimes
8
forest
7
restoration
6
restoration time
4
time fire
4

Similar Publications

Understanding the evolutionary processes underlying range-wide genomic variation is critical to designing effective conservation and restoration strategies. Evaluating the influence of connectivity, demographic change and environmental adaptation for threatened species can be invaluable to proactive conservation of evolutionary potential. In this study, we assessed genomic variation across the range of Fraxinus latifolia, a foundational riparian tree native to western North America recently exposed to the invasive emerald ash borer (Agrilus planipennis; EAB).

View Article and Find Full Text PDF

Carbon reduction effect of comprehensive land consolidation and its configuration paths at the township level: A case study of Zhejiang Province, China.

J Environ Manage

January 2025

College of Management of Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Key Laboratory of Philosophy and Social Science, National Key Laboratory of Food Security and Tianfu Granary, Sichuan Agricultural University, Chengdu, 611130, China. Electronic address:

Changing land use is one of the main factors influencing global climate change and the imbalance in the carbon cycle. Consequently, the focus of international organizations and the academic community is on strategies to mitigate carbon emissions or improve carbon sequestration by optimizing land use structure and function. Since 2019, China's Zhejiang Province has implemented a township-level pilot policy, exploring a comprehensive land consolidation (CLC for short) pilot policy that includes all elements of "mountains, rivers, forests, farmlands, lakes, and grasslands.

View Article and Find Full Text PDF

Potential bacterial resources for bioremediation of organochlorine pesticides and flame retardants recognized from forest soil across China.

J Hazard Mater

December 2024

The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China.

Microbe-mediated remediation becomes a desire method for removal of persistent organic pollutants (POPs) due to its eco-friendly and sustainable nature. The improvement of practical feasibility requires constructing comprehensive species pool, while it is still limited by the rapid recognition of potential bacterial resources from environment. Here, based on the relative abundances of bacterial OTUs and pollutant concentrations, we established indexes to assess their tolerance to organochlorine pesticides (OCPs) and flame retardants (FRs) that are atmospheric transported and naturally accumulated in forest soil via forest filter effect.

View Article and Find Full Text PDF

Globally, heavy metal (HM) soil pollution is becoming an increasingly serious concern. Heavy metals in soils pose significant environmental and health risks due to their persistence, toxicity, and potential for bioaccumulation. These metals often originate from anthropogenic activities such as industrial emissions, agricultural practices, and improper waste disposal.

View Article and Find Full Text PDF

Context: Approximately 11% of cancer survivors smoke post-diagnosis.

Objective: Understanding the relationship between smoking and perceived cancer-related symptoms may inform tobacco treatment interventions for this population.

Methods: From 2017-2021, 740 adults in 9 ECOG-ACRIN trials provided baseline data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!