A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deconstruction of Vermal Cerebellum in Ramp Locomotion in Mice. | LitMetric

Deconstruction of Vermal Cerebellum in Ramp Locomotion in Mice.

Adv Sci (Weinh)

Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310027, China.

Published: November 2022

The cerebellum is involved in encoding balance, posture, speed, and gravity during locomotion. However, most studies are carried out on flat surfaces, and little is known about cerebellar activity during free ambulation on slopes. Here, it has been imaged the neuronal activity of cerebellar molecular interneurons (MLIs) and Purkinje cells (PCs) using a miniaturized microscope while a mouse is walking on a slope. It has been found that the neuronal activity of vermal MLIs specifically enhanced during uphill and downhill locomotion. In addition, a subset of MLIs is activated during entire uphill or downhill positions on the slope and is modulated by the slope inclines. In contrast, PCs showed counter-balanced neuronal activity to MLIs, which reduced activity at the ramp peak. So, PCs may represent the ramp environment at the population level. In addition, chemogenetic inactivation of lobule V of the vermis impaired uphill locomotion. These results revealed a novel micro-circuit in the vermal cerebellum that regulates ambulatory behavior in 3D terrains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811470PMC
http://dx.doi.org/10.1002/advs.202203665DOI Listing

Publication Analysis

Top Keywords

neuronal activity
12
vermal cerebellum
8
uphill downhill
8
activity
5
deconstruction vermal
4
cerebellum ramp
4
locomotion
4
ramp locomotion
4
locomotion mice
4
mice cerebellum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!