High-performance X-ray detectors have immense potential in medical and security inspections. However, the current X-ray detectors are limited in flexible, high-spatial-resolution large-scale detection, and integration for imaging. Here, nuclear track-etched porous polyethylene terephthalate (PET) is developed as the template for preparing uniform, large-area (≥10 cm ), and flexible metal halide (MH)-based X-ray detectors. Adjustable high-density vertically oriented porous PET with adjustable thickness can provide proper physical support for flexible thick absorption film, thus improving X-ray absorption ability with excellent bending stability. Moreover, vertical channels can block the ion migration, lateral charge diffusion, and water/oxygen attacks, increasing activation energy for ionic transport, charge collection rate of electrodes, and environmental stability. Hence, the related detectors eventually obtain large sensitivity (6722 µC Gy cm ), low detection limit (1.87 nGy s ), and high spatial resolution (5.17 lp mm ) compared to the detectors without porous PET template. Meanwhile, the device shows no degradation after storage or working under various thermal attacks. MH-filled-PET is also monolithically integrated on the bottom circuit with different MHs and it is applied to single-pixel mode and fast linear-array imaging in a broad range of X-rays photon energy (20 to 160 keV).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202205095 | DOI Listing |
Eur J Nucl Med Mol Imaging
December 2024
Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
Purpose: Nanoparticles are highly efficient vectors for ferrying contrast agents across cell membranes, enabling ultra-sensitive in vivo tracking of single cells with positron emission tomography (PET). However, this approach must be fully characterized and understood before it can be reliably implemented for routine applications.
Methods: We developed a Langmuir adsorption model that accurately describes the process of labeling mesoporous silica nanoparticles (MSNP) with Ga.
Biosensors (Basel)
November 2024
Engineering Physics, McMaster University, Hamilton, ON L8S 4L8, Canada.
Free-standing capillary microfluidic channels were directly printed over printed electrodes using a particle/polymer mixture to fabricate microfluidic-electrochemical devices on polyethylene terephthalate (PET) films. Printed devices with no electrode modification were demonstrated to have the lowest limit of detection (LOD) of 7 μM for sensing glucose. The study shows that both a low polymer concentration in the mixture for printing the microfluidic channels and surface modification of the printed microfluidic channels using 3-aminopropyltrimethoxysilane can substantially boost the device's performance.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, China.
To investigate the pollution of microplastics and heavy metals from farmland soils in the upper Han River, the pollution status and distribution characteristics of pollutants were systematically analyzed. The risk level of pollutants was evaluated using methods such as the potential ecological risk index (RI). Source apportionment was identified using correlation analysis and cluster analysis.
View Article and Find Full Text PDFBiomaterials
May 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
Moisture induced by wound exudate is crucial throughout the wound repair process. The dressing directly affects the absorption, permeation, and evaporation of the wound exudate. However, most dressings in clinical often result in excessive dryness or moisture of wound due to their monotonous structure and function, leading to ineffective thermodynamic control of evaporation enthalpy.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
December 2024
Faculty of Veterinary Medicine, Pet Bone Research Group, University of Helsinki, Helsinki, Finland.
Improving bone-graft substitutes and expanding their use in orthopedic and spinal surgery leads to shorter surgical times, fewer complications, and less pain among patients both in human and veterinary medicine. This study compared an elastic porous β-tricalcium phosphate/poly(L-lactide-co-ε-caprolactone) (β-TCP/PLCL) copolymer scaffold (composite scaffold) and a commercially available β-TCP/PLCL bone-graft substitute (chronOS Strip) in a rabbit calvarial defect. A bilateral, 12-mm circular defect was created in the parietal bones of 12 rabbits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!