Metallaaromaticity - a protean world.

Phys Chem Chem Phys

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.

Published: November 2022

The nature of magnetically induced current densities (MICD) of metallabenzenes and related compounds has been examined with relativistic DFT calculations to assess the magnetic aromaticity of the molecules. The origin of the total MICD has been analyzed in terms of individual molecular orbital (MO) contributions. Our study reveals that the σ-framework of the molecules always makes a diamagnetic contribution to the MICD. On the other hand, π-MOs and Craig-Möbius type π-MOs, , MOs in which the d/d orbitals of the metal centers change the phase of the wave function akin to a Möbius twist, may not make a diatropic contribution. We have identified metallabenzenes with multiple magnetic aromaticities. In the case of iridabenzenes, σ-MICD has been found to decrease dramatically from Ir(III) to Ir(V) systems. Furthermore, a brief examination of some recently synthesized metallapolycycles has shown that the metal center in a given ring can strongly modulate the aromaticity of rings. Finally, the finding that relatively minor perturbations in the ligand environment of the metal can substantially influence the aromaticity of metallabenzenes and related molecules underscores the protean character of metallaaromaticity and the need for even wider-ranging investigations. Considering the conflicts between magnetic response and ground-state aromaticity criteria (energetic, structural, and electronic criteria), we propose that the term aromatic be used for labeling a molecule if and only if all criteria confirm aromaticity. In other words, neither magnetic nor ground-state criteria are necessary and sufficient conditions for labeling a molecule aromatic.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp04846aDOI Listing

Publication Analysis

Top Keywords

labeling molecule
8
aromaticity
5
metallaaromaticity protean
4
protean nature
4
nature magnetically
4
magnetically induced
4
induced current
4
current densities
4
densities micd
4
micd metallabenzenes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!