Raman and near-infrared spectroscopy for in-line sensors.

Anal Sci

Life R & D Department, Innovation Center, Marketing Headquarters, Yokogawa electric corporation, 2-9-32 Naka-Cho, Musashino-Shi, Tokyo, 180-8750, Japan.

Published: December 2022

Download full-text PDF

Source
http://dx.doi.org/10.1007/s44211-022-00202-7DOI Listing

Publication Analysis

Top Keywords

raman near-infrared
4
near-infrared spectroscopy
4
spectroscopy in-line
4
in-line sensors
4
raman
1
spectroscopy
1
in-line
1
sensors
1

Similar Publications

Development and Characterization of Hyaluronic Acid Graft-Modified Polydopamine Nanoparticles for Antibacterial Studies.

Polymers (Basel)

January 2025

School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.

The problem of antibiotic abuse and drug resistance is becoming increasingly serious. In recent years, polydopamine (PDA) nanoparticles have been recognized as a potential antimicrobial material for photothermal therapy (PTT) due to their excellent photothermal conversion efficiency and unique antimicrobial ability. PDA is capable of rapidly converting light energy into heat energy under near-infrared (NIR) light irradiation to kill bacteria efficiently.

View Article and Find Full Text PDF

Cartilage is a connective tissue composed of mainly water, collagen (COL) and proteoglycans (PGs) including chondroitin sulfate (CS). Near-infrared (NIR) spectroscopy is adequate for examination of soft and hard tissues with large amount of water non-destructively and non-invasively. We measured tablets containing CS and COL using NIR spectroscopy to develop an evaluation method for PGs in cartilage non-destructively and non-invasively.

View Article and Find Full Text PDF

Interfacial Properties of Gold and Cobalt Oxyhydroxide in Plasmon-Mediated Oxygen Evolution Reaction.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, California 94132, United States.

Water electrolysis is a green method of storing electrical energy in the chemical bonds of high-energy hydrogen gas (H). However, the anodic oxygen evolution reaction (OER) requires a significant kinetic overpotential, limiting the electrolysis rate. Recently, plasmonic gold nanoparticles (Au NPs) have been introduced to improve charge transfer at the interface between the OER electrocatalysts and the electrolyte under light illumination.

View Article and Find Full Text PDF

Within the context of polypropylene recycling by dissolution, the potential degradation of polypropylene in solution has been investigated using in situ NIR and Raman spectroscopy. Pure polypropylene, completely free of additives, and commercial polypropylene, low in additives, are degraded on purpose under different conditions. Genetic algorithm combined with partial least squares (GA-PLS) models have been built based on near-infrared (NIR) spectra, and partial least squares (PLS) models based on Raman spectra, to predict the mass average molar mass and the chain-scission rate, respectively, during the degradation process.

View Article and Find Full Text PDF

Artificial Fine-Tuned van Hove Singularity in Twisted Bilayer and Double-Twist Trilayer Graphene with Enhanced Absorption for Photodetection and Photoemission in the Near-Infrared II Range.

ACS Appl Mater Interfaces

January 2025

State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China.

Optical responses of twisted bilayer graphene at targeted wavelengths can be amplified by leveraging energy levels of van Hove singularities (VHS) via tuning periods of moiré superlattices. Therefore, precise control of twist angles as well as the moiré superlattices is necessary for fabricating integrated optoelectronic devices such as photodetectors and emitters. Although recent advances in twist angle control help the observation of correlated states in twisted magic-angle graphene structures, the impact of such precise control on enhanced optical absorption is still under investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!