In this work, a novel capillary column (C4A-mPEG) with a calixarene-based polymer stationary phase (poly(ethylene glycol) methyl ether-functionalized 4-tert-butylcalix[4]arene) was designed and used for gas chromatographic (GC) separations. The C4A-mPEG capillary column, prepared by the static coating method, showed moderate polarity and a column efficiency of 2332 plates/m, determined by 1-octanol at 120 °C. The separation features of C4A-mPEG stationary phase, resulting from its unique structure and multiple molecular recognition processes with analytes, including π-π, H-bonding, dipole-dipole, and van der Waals interactions, allowed to obtain high-resolution performances for a wide range of compounds and their isomers, especially benzaldehydes, phenols, and anilines. Moreover, compared with 4-tertbutyl calix[4]arene (C4A) and polyethylene glycol (PEG) stationary phases, a higher resolving capability was also observed for the separation of toluidine and xylidine isomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.202200829 | DOI Listing |
Tzu Chi Med J
October 2024
Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Objectives: The optimization of polyethylene glycol (PEG)-based extracellular vesicles (EVs) extraction from human follicular fluid (FF) and serum was investigated, and their functional analysis was confirmed. The PEG-based EV results were compared to the ExoQuick (ExoQ)-based EV.
Materials And Methods: FF-EVs and serum-EVs were extracted by using different concentrations of PEG (8000).
Research (Wash D C)
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.
Hyperglycemia and bacterial colonization in diabetic wounds aberrantly activate Nod-like receptor protein 3 (NLRP3) in macrophages, resulting in extensive inflammatory infiltration and impaired wound healing. Targeted suppression of the NLRP3 inflammasome shows promise in reducing macrophage inflammatory disruptions. However, challenges such as drug off-target effects and degradation via lysosomal capture remain during treatment.
View Article and Find Full Text PDFImmunohorizons
January 2025
Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States.
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States.
Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.
View Article and Find Full Text PDFFood Res Int
February 2025
Ghent University, Department of Applied Physics, Research Unit Plasma Technology (RUPT), Belgium.
Recently, interest in eco-friendly techniques for producing antibacterial food packaging films has surged. Within this context, plasma polymerization is emerging as a promising approach for applying degradable antibacterial coatings on various plastic films. This research therefore employs an atmospheric pressure aerosol-assisted plasma deposition technique to create polyethylene glycol (PEG)-like coatings embedding zinc oxide nanoparticles (ZnO NPs) of varying sizes on polyethylene (PE) substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!