Fibronectin, the major cell surface glycoprotein of fibroblasts, is absent from differentiated cartilage matrix and chondrocytes in situ. However, dissociation of embryonic chick sternal cartilage with collagenase and trypsin, followed by inoculation in vitro reinitiates fibronectin synthesis by chondrocytes. Immunofluorescence microscopy with antibodies prepared against plasma fibronectin (cold insoluble globulin [CIG]) reveals fibronectin associated with the chondrocyte surface. Synthesis and secretion of fibronectin into the medium are shown by anabolic labeling with [35S]methionine or [3H]glycine, and identification of the secreted proteins by immunoprecipitation and sodium dodecyl sulfate (SDS)-disc gel electrophoresis. When chondrocytes are plated onto tissue culture dishes, the pattern of surface-associated fibronectin changes from a patchy into a strandlike appearance. Where epithelioid clones of polygonal chondrocytes develop, only short strands of fibronectin appear preferentially at cellular interfaces. This pattern is observed as long as cells continue to produce type II collagen that fails to precipitate as extracellular collagen fibers for some time in culture. Using the immunofluorescence double-labeling technique, we demonstrate that fibroblasts as well as chondrocytes which synthesize type I collagen and deposit this collagen as extracellular fibers show a different pattern of extracellular fibronectin that codistributes in large parts with collagen fibers. Where chondrocytes begin to accumulate extracellular cartilage matrix, fibronectin strands disappear. From these observations, we conclude (a) that chondrocytes synthesize fibronectin only in the absence of extracellular cartilage matrix, and (b) that fibronectin forms only short intercellular "stitches" in the absence of extracellular collagen fibers in vitro.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2110257 | PMC |
http://dx.doi.org/10.1083/jcb.79.2.342 | DOI Listing |
Extracell Vesicle
December 2024
Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA.
Matrix-bound vesicles (MBVs), an integral part of the extracellular matrix (ECM), are emerging as pivotal factors in ECM-driven molecular signaling. This study is the first to report the isolation of MBVs from porcine arterial endothelial cell basement membranes (A-MBVs) and thyroid cartilage (C-MBVs), the latter serving as a negative control due to its minimal vascular characteristics. Using Transmission Electron Microscopy (TEM), Nano-Tracking Analysis (NTA), Electrochemical Impedance Spectroscopy (EIS), and Atomic Force Microscopy (AFM), we orthogonally characterized the isolated MBVs.
View Article and Find Full Text PDFAnn Biomed Eng
January 2025
School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.
Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.
Histochem Cell Biol
January 2025
Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA).
View Article and Find Full Text PDFNutrients
January 2025
Department of Anesthesiology, Cathay General Hospital, Taipei 280, Taiwan.
Knee osteoarthritis (OA) is a common and debilitating disorder marked by joint degradation, inflammation, and persistent pain. This study examined the possible therapeutic effects of curcumin and vitamin D on OA progression and pain in a rat knee OA model by anterior cruciate ligament transection and meniscectomy (ACLT + MMx). Male Wistar rats were categorized into five groups: control, curcumin-treated (100 mg/kg/day), vitamin D-treated (25 µg/kg/day), a combination of vitamin D and curcumin, and sham-operated.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic.
The use of scaffolds for osteochondral tissue regeneration requires an appropriate selection of materials and manufacturing techniques that provide the basis for supporting both cartilage and bone tissue formation. As scaffolds are designed to replicate a part of the replaced tissue and ensure cell growth and differentiation, implantable materials have to meet various biological requirements, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!