This work represents a biocompatible magnetic nanobiocomposite prepared by the composition of chitosan (CS) hydrogel, silk fibroin (SF), graphene oxide (GO), and FeO NPs. Terephthaloyl thiourea was applied as a cross-linking agent to cross-link the CS strings. The CS hydrogel/SF/GO/FeO nanobiocomposite with many characteristics, such as high structural uniformity, thermal stability, biocompatibility, and stability in an aqueous solution. Various characteristics of this novel magnetic nanobiocomposite were distinguished by FT-IR, EDX, FE-SEM, XRD, TGA, and VSM analysis. The FE-SEM images were taken to evaluate the size distribution of the magnetic nanoparticles (MNPs) between 39.9 and 73.3 nm as well. The performance of the prepared nanobiocomposite was assessed by the magnetic fluid hyperthermia process. Under the alternating magnetic field (AMF), the mean value of the specific absorption rate (SAR) was determined at 43.15 w/g.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.120246DOI Listing

Publication Analysis

Top Keywords

magnetic nanobiocomposite
8
magnetic
6
nanobiocomposite
5
magnetic chitosan-silk
4
chitosan-silk fibroin
4
fibroin hydrogel/graphene
4
hydrogel/graphene oxide
4
oxide nanobiocomposite
4
nanobiocomposite biological
4
biological hyperthermia
4

Similar Publications

The design and synthesis of biocompatible nanostructures for biomedical applications are considered vital challenges. Herein, a nanobiocomposite based on acacia hydrogel, natural silk fibroin protein, and synthetic protein fibers of polyvinyl alcohol was fabricated and magnetized with iron oxide nanoparticles (FeO MNPs). The structural properties of the hybrid nanobiocomposite were investigated by essential analyses such as Fourier Transform Infrared Spectrometer (FTIR), Field emission scanning electron microscopy (FE-SEM), and X-ray powder diffraction)XRD(analyses, Thermogravimetric and Differential thermogravimetric analysis (TGA-DTG), Vibrating-sample magnetometry (VSM), and Energy Dispersive X-Ray Analysis (EDX).

View Article and Find Full Text PDF

To eliminate contaminated organic matter from water and wastewater, a stable, recyclable, and environmentally friendly nano-biocomposite was designed. The magnetic FeO nanoparticles were functionalized by SiO/N--(aminoethyl)-3-aminopropyl/glutaraldehyde/chitosan/Cobalt to fabricate nano-biocomposite (FS-(Am//Cs)@CoNPs). The morphological/structural identification of nano-biocomposite was carried out by ICP-OES, DR-UV, XRD, FE-SEM, TEM, HR-TEM, BET, EDX, FT-IR, TGA, and VSM techniques.

View Article and Find Full Text PDF

Hydrogels based on natural polymers have lightened the path of novel drug delivery systems, wound healing, and tissue engineering fields because they are renewable, non-toxic, biocompatible, and biodegradable. Furthermore, applying modified hydrogels can upgrade their biological activity. Herein, Chitosan (CS) was used to create a hydrogel using terephthaloyl thiourea as a cross-linker.

View Article and Find Full Text PDF

In our study, we developed a novel nanobiocomposite using graphene oxide (GO), casein (Cas), ZnAl layered double hydroxide (LDH), sodium alginate (Alg), and FeO magnetic nanoparticles. To synthesize the GO, we used a modified Hummer's method and then covalently functionalized its surface with Cas protein. The functionalized GO was combined with as-synthesized ZnAl LDH, and the composite was conjugated with alginate hydrogel through the gelation process.

View Article and Find Full Text PDF

Herein, a new magnetic nanobiocomposite based on a synthesized cross-linked pectin-cellulose hydrogel (cross-linked Pec-Cel hydrogel) substrate was designed and synthesized. The formation of the cross-linked Pec-Cel hydrogel with a calcium chloride agent and its magnetization process caused a new and efficient magnetic nanobiocomposite. Several spectral and analytical techniques, including FTIR, SEM, VSM, TGA, XRD, and EDX analyses, were performed to confirm and characterize the structural features of the magnetic cross-linked pectin-cellulose hydrogel nanobiocomposite (magnetic cross-linked Pec-Cel hydrogel nanobiocomposite).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!