Nitrogen flow analysis in Spain: Perspectives to increase sustainability.

Sci Total Environ

Chemical Engineering Department, UPC-BarcelonaTECH, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain. Electronic address:

Published: February 2023

Nitrogen (N) is a macronutrient that, together with P and K, is vital for improving agricultural yields, but its excessive use in crop fertilisation and presence in treated wastewater and sludge are generating emissions both into the atmosphere and into natural water bodies, which leads to eutrophication events. The Haber-Bosch process is energy-intensive and it is the main chemical route to produce reactive nitrogen for the production of fertilisers. Furthermore, there is a strong dependence on imports of reactive nitrogen in Spain and Europe. For these reasons, it is necessary to propose sustainable alternatives that allow solving environmental and supply problems, in addition to proposing efficient management schemes that fit into the circular economy approach. In this context, a nitrogen flow analysis (NFA) was carried out for Spain with the year 2016 as reference. To assess some interactions and flows of N, specific sub-models were also considered for the agriculture and waste management systems. For the food and non-food flow systems, country-specific data were considered. The sectors covered were crop production (CP), animal production (AP), food processing (FP), non-food production (NF) and human consumption (HC). The results reveal a total annual import of 2142 kt N/y, of which 43 % accumulated in stocks of soils and water bodies (913 kt N/y). The largest proportion of losses was associated with emissions from agriculture (724 kt N/y to water bodies and 132 kt N/y accumulated in soils), followed by industry emissions to the atmosphere (122 kt N/y). Wastewater treatment plants (WWTPs) received around 67 kt N/y, of which 26 % was removed as biosolids and 20 % of these biosolids were recovered to be used for fertilising applications. The 49 kt N/y discharged in the final treated effluent represented 79 % of the total loss of reactive nitrogen to water bodies. In addition, an analysis of N-use efficiency and the actions required for its improvement in Spain, as well as the impact of the current diet on the N cycle, was carried out.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160117DOI Listing

Publication Analysis

Top Keywords

water bodies
16
reactive nitrogen
12
nitrogen flow
8
flow analysis
8
emissions atmosphere
8
n/y accumulated
8
n/y
7
nitrogen
6
spain
4
analysis spain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!