A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The first marine dual-drug cocrystal of cytarabine with 5-fluorouracil having synergistic antitumor effects shows superior biopharmaceutical peculiarities by oral administration. | LitMetric

The first marine dual-drug cocrystal of cytarabine with 5-fluorouracil having synergistic antitumor effects shows superior biopharmaceutical peculiarities by oral administration.

Int J Pharm

School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China. Electronic address:

Published: December 2022

In order to highlight the advantages of cocrystallization technique in perfecting in vitro/vivo natures of marine drug cytarabine (ARC), and fill the gap of the research of marine pharmaceutical cocrystals with synergistic antitumor effects, the first dual-drug cocrystal simultaneously containing ARC and antitumor drug 5-fluorouracil (FU), viz. ARC-FU, is successfully designed and assembled. The accurate structure is perfectly resolved by single-crystal X-ray diffraction and other approaches. The analytical outcomes demonstrate that the codrug cocrystal consists of ARC and FU with a molar ratio of 1:1, in which FU molecule plays an important role by participating in the formation of both "pyrimidine-pyrimidine" and "pyrimidine-sugar" cyclic hydrogen-bonding systems with ARC molecules. In the cocrystal, there are twofold hydrogen-bonding helixes of ARC molecules and a whole three-dimensional hydrogen-bonding network which also contains the aromatic stacking interaction between pyrimidine rings of both components. Such structural feature and aggregation model have crucial influences on the improvements of in vitro/vivo properties, which is methodically verified by the combination of theoretical analyses and experimental measurements. The in vitro studies exhibit the suitably reduced solubility and obviously increased permeability for the cocrystal that is in accord with the theoretical prediction. Importantly, the ameliorated in vitro peculiarities realize in vivo pharmacokinetic optimization including the extended residence time and enhanced relative bioavailability. Of greater significance, ARC exerts synergistic antitumor effects in association with FU that brings about potentiation of cell growth inhibition with lower IC. Thus, this research not only provides a novel crystalline form for ARC with forward-looking development value, but also breaks new ground for the development of synergistic antitumor pharmaceutical cocrystals with marine characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2022.122386DOI Listing

Publication Analysis

Top Keywords

synergistic antitumor
16
antitumor effects
12
dual-drug cocrystal
8
pharmaceutical cocrystals
8
arc molecules
8
arc
7
cocrystal
5
antitumor
5
marine
4
marine dual-drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!