Bacterial two-component systems (TCSs), which typically consist of a sensor histidine kinase (HK) and a response regulator (RR), have been investigated as attractive antibacterial drug targets. Unfortunately, current HK activity assays based on the quantification of autophosphorylated HKs are hampered by the instability of the phosphohistidine (pHis) product, rendering them ill-suited for high-throughput screenings. To address this challenge, we developed a simple HK activity assay using readily available reagents, which we have termed AUDECY (AUtophosphorylation-DEphosphorylation CYcle assay). Instead of trying to preserve the fragile pHis, we deliberately decomposed it with a pHis-specific phosphatase to constitute an ATPase-like cycle for convenient colorimetric measurements. This kinetic assay was successfully employed for the kinetic characterization of E. coli EnvZ and for high-throughput inhibitor screening of vancomycin-resistant Enterococcus faecium (VRE) VanS, of which histidine kinase activity was hardly detectable with conventional methods. Through the screening, we identified OSU-03012, a potent VanS HK inhibitor, which sensitized VRE toward vancomycin, highlighting the potential of AUDECY in HK inhibitor discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2022.106232 | DOI Listing |
Molecules
December 2024
Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Biotechnology and Environmental Microbiology, Autonomous Metropolitan University-Lerma, Hidalgo Pte. 46, Lerma 52006, State of Mexico, Mexico.
Unlabelled: Dysfunction in the prefrontal cortex can lead to cognitive inflexibility due to multifactorial causes as included cardiometabolic disorders, stress, inadequate diets, as well as an imbalance of the gut-brain axis microbiota. However, these risk factors have not been evaluated jointly. The purpose of this study was to evaluate the effect of physical stress (MS: Male Stress and FS: Female Stress) and high-fat diet (MD: Male Diet and FD: Female Diet) supplementation on the gut microbiota and cognitive flexibility.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles St., Frederick, MD 21702, USA.
Polo-like kinase 1 (Plk1) is an important cell cycle regulator that is a recognized target for development of anti-cancer therapeutics. Plk1 is composed of a catalytic kinase domain (KD), a flexible interdomain linker and a polo-box domain (PBD). Intramolecular protein-protein interactions (PPIs) between the PBD and KD result in "auto-inhibition" that is an essential component of proper Plk1 function.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
College of Biomedical Sciences, Larkin University, Miami, FL, 33169, USA.
Nucleic Acids Res
December 2024
Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA.
The eukaryotic microrchidia (MORC) protein family are DNA gyrase, Hsp90, histidine kinase, MutL (GHKL)-type ATPases involved in gene expression regulation and chromatin compaction. The molecular mechanisms underlying these activities are incompletely understood. Here, we studied the full-length human MORC2 protein biochemically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!