The literature describing the complex anatomy of the middle cerebral artery (MCA), lenticulostriate arteries, and recurrent artery of Heubner, does not discuss the comparative anatomy of the cerebrum, MCA, the recurrent artery of Heubner, and the relationship of the MCA with the rhinal sulci. The entorhinal literature does not detail the comparative anatomic modification of the rhinal and endorhinal sulci, piriform lobe and the hippocampus's compressed positional change in the temporal lobe. This investigation's objectives were to analyze the comparative anatomic modifications of the cerebrum, the MCA, lenticulostriate arteries, recurrent artery of Heubner, olfactory tubercule, anterior perforate substance, rhinal sulcus, endorhinal sulcus, piriform lobe, entorhinal cortex, and hippocampus. Brain dissections of adult iguana, rabbit, sheep, cat, dog, macaque, human and human fetal specimens were analyzed. The MCA branches enter the striate nuclei via the endorhinal sulcus, with few branches present in the rhinal sulcus. Modifications of the cerebrum, with the development of gyri and sulci and opercula covering the insula, changes the linear surface configuration of the MCA into a tridimensional one. Similar changes are present in human fetal specimens. The cerebral neocortical expansion changes the position of the rhinal and endorhinal sulci, their relationship with the MCA, the size of the olfactory tubercule, the position and size of the piriform lobe, and the diagonal course of the lenticulostriates and recurrent artery of Heubner. The hippocampus becomes compressed in the inferomedial region of the human temporal lobe. The lenticulostriate arteries are likely the first developed component of the MCA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.25124 | DOI Listing |
Diagnostics (Basel)
December 2024
Medical School, Universidad de las Américas (UDLA), Quito 170124, Ecuador.
The piriform cortex (PC) plays a pivotal role in the onset and propagation of temporal lobe epilepsy (TLE), making it a potential target for therapeutic interventions. This review delves into the anatomy and epileptogenic connections of the PC, highlighting its significance in seizure initiation and resistance to pharmacological treatments. Despite its importance, the PC remains underexplored in surgical approaches for TLE.
View Article and Find Full Text PDFEpilepsia
December 2024
Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA.
Objective: Area tempestas, a functionally defined region in the anterior piriform cortex, was identified as a crucial ictogenic trigger zone in the rat brain in the 1980s. However, whether the primate piriform cortex can trigger seizures remains unknown. Here, in a nonhuman primate model, we aimed to localize a similar trigger zone in the piriform cortex and, subsequently, evaluated the ability of focal inhibition of the substantia nigra pars reticulata (SNpr) to suppress the evoked seizures.
View Article and Find Full Text PDFJ Integr Neurosci
November 2024
Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China.
Background: This research aimed to delve into the cortical morphological transformations in patients with magnetic resonance imaging (MRI)-negative temporal lobe epilepsy (TLE-N), seeking to uncover the neuroimaging mechanisms behind these changes.
Methods: A total of 29 individuals diagnosed with TLE-N and 30 healthy control participants matched by age and sex were selected for the study. Using the surface-based morphometry (SBM) technique, the study analyzed the three-dimensional-T1-weighted MRI scans of the participants' brains.
Ann Afr Med
November 2024
Department of Pediatric A, Mohammed VI University Hospital and Faculty of Medicine and Pharmacy, Cadi Ayad University, Marrakech, Morocco.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!