This study assessed the potential radiological risks associated with the activities on Olusosun dump site on workers and dwellers of Olusosun community. The activity concentrations of 238U, 232Th and 40K from of soil and water samples were determined using High-Purity Germanium (HPGe) detector. The background radiation level of Olusosun dump site was measured using a portable Geiger-Müller counter-Radeye B20 survey meter. The mean value of background radiation was 1.46 mSv/yr. This value is about 46% higher than the recommended reference level of 1.0 mSv/yr for the public. The mean activity concentrations of 238U, 232Th and 40K in the soil samples were 19.1 ± 3.2, 29.1 ± 4.4 and 171.5 ± 6.1 Bq/kg respectively which are about 45.4%, 35.3% and 59.2% lower than the world's average levels. For the water samples, the mean activity concentrations obtained for 238U, 232Th and 40K are 0.4 ± 0.4, 0.8 ± 0.2 and 0.8 ± 0.3 Bq/l respectively. These are about 99.9% and 20% lower than WHO reference levels for 238U and 232Th. The mean absorbed dose rate in air (D), Annual effective dose (AED) outdoor, Radium Equivalent (Req), External hazard index (Hex) internal hazard index (Hin) and Excess lifetime cancer risk (ELCR) from soil samples were 33.6 nGy/h, 41.0 μSv/yr, 73.1 Bq/kg and 0.2, 0.3 and $1.4\times{10}^{-4}$, respectively. Absorbed dose in air D, AED outdoor, Req, Hex, Hin and ELCR are 41.1%, 41.4%, 80.3%, 80%, 75% and 50% lower than their corresponding world's average and references. The estimated AEDw from ingestion of water is 148.9 ± 50.4 μSv/yr, this is about 49% higher than the WHO reference level of 100.0 μSv/y from ingestion of water. The radiological hazard indices estimated from soil samples do not indicate any potential risks to the users. The elevated background radiation level of the dump site, and AEDw from ingestion of water, however, suggest that the activities on Olusosun dump site pose potential radiological risks on workers on the site and the public from consumption of water from Olusosun community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855325PMC
http://dx.doi.org/10.1093/jrr/rrac067DOI Listing

Publication Analysis

Top Keywords

dump site
20
olusosun dump
16
238u 232th
16
activities olusosun
12
activity concentrations
12
concentrations 238u
12
232th 40k
12
background radiation
12
soil samples
12
ingestion water
12

Similar Publications

Purpose: Waste mismanagement is a growing concern in developing countries where unsustainable practices such as open dumping and open burning are rampant. This study examined the risk perceptions of the residents living in proximity to the Brahmapuram dump yard, situated in Ernakulam district of Kerala State, India- A site marked by persistent local protests, public outrage, and legal disputes arising from issues related to waste mismanagement. The study focused on the geospatial and sociodemographic factors that might influence these perceptions.

View Article and Find Full Text PDF

The focus of this study was to assess the environmental impact of the BATOKE oil sludge dump. A field visit was conducted to evaluate the condition of the site, followed by the sampling of oil sludge, BATOKE river water, soil, and locally grown manioc and macabo tubers. Subsequent physico-chemical characterization revealed parameters such as pH, electrical conductivity, total hydrocarbons, COD, BOD5, TSS, major cations and anions, as well as heavy metals including iron, copper, zinc, nickel, chromium, lead, cadmium, mercury, arsenic, calcium, potassium, titanium, zirconium, and rubidium.

View Article and Find Full Text PDF

Open dumping and burning of solid waste are widely practiced in underserved communities lacking access to solid waste management facilities; however, the generation of microplastics from these sites has been overlooked. We report elevated concentrations of microplastics (MPs) in soil of three solid waste open dump and burn sites: a single-family site in Tuttle, Oklahoma, USA, and two community-wide sites in Crow Agency and Lodge Grass, Montana, USA. We extracted, quantified, and characterized MPs from two soil depths (0-9 cm and 9-18 cm).

View Article and Find Full Text PDF

Structural analysis of dUTPase from Helicobacter pylori reveals unusual activity for dATP.

Int J Biol Macromol

December 2024

Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India. Electronic address:

Helicobacter pylori deoxyuridine triphosphate nucleotidohydrolase (HpdUTPase) is a key enzyme in the synthesis of the thymidine nucleotide pathway. It catalyzes the hydrolysis of dUTP to dUMP and releases pyrophosphate. This enzyme has been shown to be essential in several pathogenic organisms.

View Article and Find Full Text PDF

Mega-nourishments, where large volumes of sediment are deposited on coastlines, are increasingly employed to manage shoreline erosion, yet our understanding of their long-term behaviour is limited by the fact that most current schemes are less than 15 years old. However, on the County Durham coast, 39 million m of coal spoil was tipped onto beaches between the late 1800s and 1993, acting as a de facto mixed sediment mega-nourishment. Our findings reveal key insights into the long-term dynamics of mega-nourishment schemes, including evidence of effective sediment dispersal around headlands into normally disconnected units of coast.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!