The therapeutic application of neural stem cells (NSCs) in the central nerve system (CNS) injury is a promising strategy for combating irreversible neuronal loss. However, a variety of obvious inflammatory responses following nerve injury rapidly create an unfavorable microenvironment for survival and neuronal differentiation of NSCs in lesion area, limiting the efficacy of NSC-based therapy for CNS injury. It remained unknown how to effectively increase the neuronal differentiation efficiency of NSCs through transplantation. Here, we demonstrated that curcumin (CCM)-activated olfactory ensheathing cells (aOECs) effectively promoted neuronal differentiation of NSCs in the activated microglial inflammatory condition, and co-transplantation of aOECs and NSCs improved neurological recovery of rats after spinal cord injury (SCI), as evidenced by higher expression levels of neuronal markers and lower expression levels of glial markers in the differentiated cells, greater number of Tuj-1-positive cells as well as higher Basso, Beattie, and Bresnahan (BBB) locomotor scale, compared to the corresponding controls. Pathologically, hematoxylin and eosin (HE) staining and immunostaining also showed that aOECs remarkably enhanced the in vivo neuronal differentiation of NSCs and migration, and nerve repair. Further analysis revealed that the underlying mechanisms of aOECs potentiating the neuronal conversion of NSCs under inflammatory environment were tightly associated with up-regulation of anti-inflammatory cytokines and neurotrophic factors in OECs, and importantly, the activation of Wnt3/β-catenin pathway was likely involved in the mechanisms underlying the observed cellular events. Therefore, this study provides a promising strategy for SCI repair by co-transplantation of aOECs and NSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-022-03113-w | DOI Listing |
Cell Death Discov
January 2025
Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.
View Article and Find Full Text PDFInsects
January 2025
Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy.
severely damages the production of berry and stone fruits in large parts of the world. Unlike , which reproduces on overripe and fermenting fruits on the ground, prefers to lay its eggs in ripening fruits still on the plants. Flies locate fruit hosts by their odorant volatiles, which are detected and encoded by a highly specialised olfactory system before being translated into behaviour.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA.
Background/objectives: Strabismus is the most common ocular disorder of childhood. Three rare, recurrent genetic duplications have been associated with both esotropia and exotropia, but the mechanisms by which they contribute to strabismus are unknown. This work aims to investigate the mechanisms of the smallest of the three, a 23 kb duplication on chromosome 4 (hg38|4:25,554,985-25,578,843).
View Article and Find Full Text PDFGenes (Basel)
December 2024
Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Old Aberdeen AB24 3UE, UK.
Background/objectives: A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control.
Methods: We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!