Prestin is a high-density motor protein in the outer hair cells (OHCs), whose conformational response to acoustic signals alters the shape of the cell, thereby playing a major role in sound amplification by the cochlea. Despite recent structures, prestin's intimate interactions with the membrane, which are central to its function remained unresolved. Here, employing a large set (collectively, more than 0.5 ms) of coarse-grained molecular dynamics simulations, we demonstrate the impact of prestin's lipid-protein interactions on its organization at densities relevant to the OHCs and its effectiveness in reshaping OHCs. Prestin causes anisotropic membrane deformation, which mediates a preferential membrane organization of prestin where deformation patterns by neighboring copies are aligned constructively. The resulting reduced membrane rigidity is hypothesized to maximize the impact of prestin on OHC reshaping. These results demonstrate a clear case of protein-protein cooperative communication in membrane, purely mediated by interactions with lipids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653410 | PMC |
http://dx.doi.org/10.1038/s41467-022-34596-9 | DOI Listing |
Hear Res
January 2025
Columbia University Irving Medical Center, Department of Otolaryngology, Head and Neck Surgery, 180 Fort Washington Ave, New York, 10032, NY, USA; Columbia University, Department of Biomedical Engineering, 1210 Amsterdam Ave, New York, 10027, NY, USA.
Sound-evoked displacement responses at the outer hair cell-Deiters' cell junction (OHC-DC) are of significant interest in cochlear mechanics, as OHCs are believed to be in part responsible for active tuning enhancement and amplification. Motion in the cochlea is three-dimensional, and the architecture of the organ of Corti complex (OCC) suggests the presence and mechanical importance of all three components of motion. Optical coherence tomography (OCT) displacement measurements of OHC-DC motion from different experimental preparations often show disparate results, potentially due to OCT measuring only the motion component along the beam axis.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China.
Noise-induced hearing loss (NIHL) results from prolonged exposure to intense noise, causing damage to sensory outer hair cells (OHCs) and spiral ganglion neurons (SGNs). The blood labyrinth barrier (BLB) hinders systemic drug delivery to the inner ear. This study applied a retro-auricular round window membrane (RWM) method to bypass the BLB, enabling the transport of macromolecular proteins into the inner ear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.
Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.
Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.
Hear Res
December 2024
Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia. Electronic address:
In the adult mammalian cochlea, hair cell loss is irreversible and causes deafness. The basic helix-loop transcription factor Atoh1 is essential for normal hair cell development in the embryonic ear. Over-expression of Atoh1 in the adult cochlea by gene therapy can convert supporting cells (cells that underlie hair cells) into a hair cell lineage.
View Article and Find Full Text PDFDev Dyn
January 2025
Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, China.
Background: Previous studies with Gfi1-mutated lines have shown that Gfi1 is essential for hair cell maturation and survival.
Results: We analyzed the phenotype of another Gfi1-mutated line Gfi1 in the inner ears of neonates at P5-7 and found that the cochlea phenotypically differed from the vestibule in the Gfi1 mouse. Specifically, there was a marked reduction in hair cells in the cochlea, which was characterized by greater reductions in the outer hair cells but far less reductions (mainly in the basal turn) in the inner hair cells, whereas the vestibular hair cells remained unaffected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!