Metal organic frameworks (MOFs) have received a lot of attention in the research community due to their unique physical properties, which make them ideal materials for targeted drug delivery systems. In this paper, we describe the synthesis of a non-toxic La-based MOF with 3,4-dihydroxycinnamic acid (3,4-DHCA) as a linker. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), nitrogen adsorption-desorption measurements, and X-ray powder diffraction (XRD) have all been used to characterize it thoroughly. The La-based MOF showed good biocompatibility with the human breast cancer cell line MDA-MB-468. The ability of 3,4-DHCA to treat MDA-MB-468 cells was confirmed by 40.35% cell viability with La-based MOF. Based on the findings, La-based MOF can be recommended as a promising candidate for anticancer delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655864PMC
http://dx.doi.org/10.1186/s13065-022-00886-yDOI Listing

Publication Analysis

Top Keywords

la-based mof
16
metal organic
8
34-dihydroxycinnamic acid
8
drug delivery
8
human breast
8
breast cancer
8
electron microscopy
8
lanthanum-based metal
4
organic framework
4
framework la-mof
4

Similar Publications

A cost-effective and sustainable method is successfully developed to produce lignin-based cryogels with a mechanically robust 3D interconnected structure. A choline chloride-lactic acid (ChCl-LA)-based deep eutectic solvent (DES) is used as a cosolvent to promote the synthesis of lignin-resorcinol-formaldehyde (LRF) gels that can self-assemble a robust string-bead-like framework. The molar ratio of LA to ChCl in DES has a significant influence on the gelation time and properties of the ensuing gels.

View Article and Find Full Text PDF

The metal or metal clusters and organic ligands are relevant to the selectivity and performance of phosphate removal in MOFs, and the electron structure, chemical characteristics, and preparation method also affect efficiency and commercial promotion. However, few reports focus on the above, especially for 2D MOF nanomaterials. In this work, two 2D Ln-TDA (Ln = La, Ce) nanosheets assembled microwave- and ultrasonic-assisted methods are employed as adsorbents for phosphate (HPO , HPO ) removal for the first time.

View Article and Find Full Text PDF

Metal organic frameworks (MOFs) have received a lot of attention in the research community due to their unique physical properties, which make them ideal materials for targeted drug delivery systems. In this paper, we describe the synthesis of a non-toxic La-based MOF with 3,4-dihydroxycinnamic acid (3,4-DHCA) as a linker. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), nitrogen adsorption-desorption measurements, and X-ray powder diffraction (XRD) have all been used to characterize it thoroughly.

View Article and Find Full Text PDF

Phosphate removal and recovery by lanthanum-based adsorbents: A review for current advances.

Chemosphere

September 2022

Linde-Robinson Laboratories, California Institute of Technology, Pasadena, CA, 91125, United States. Electronic address:

Controlling eutrophication and recovering phosphate from water bodies are hot issues in the 21st century. Adsorption is considered to be the best method for phosphate removal because of its high adsorption efficiency and fast removal rate. Among the many adsorbents, lanthanum (La)-based adsorbents have been paid more and more attention due to their strong affinity to phosphorus.

View Article and Find Full Text PDF

Comparative evaluation of Fe-, Zr-, and La-based metal-organic frameworks derived from recycled PET plastic bottles for arsenate removal.

Chemosphere

May 2022

Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea. Electronic address:

Metal-organic frameworks (MOFs) derived from recycled polyester (polyethylene terephthalate, PET) bottles were investigated in both batch and column studies for the removal of arsenate. As-synthesized Fe-MOF, Zr-MOF, and La-MOF were systematically analyzed by SEM, PXRD, FTIR, BET, and XPS techniques. The obtained MOFs showed high crystallinity with the specific surface areas of 128.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!