Background: Genes related to the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex are frequently mutated across cancers. SWI/SNF-mutant tumors are vulnerable to synthetic lethal inhibitors. However, the landscape of SWI/SNF mutations and their associations with tumor mutational burden (TMB), microsatellite instability (MSI) status, and response to immune checkpoint inhibitors (ICIs) have not been elucidated in large real-world Chinese patient cohorts.
Methods: The mutational rates and variation types of six SWI/SNF complex genes (ARID1A, ARID1B, ARID2, SMARCA4, SMARCB1, and PBRM1) were analyzed retrospectively by integrating next-generation sequencing data of 4591 cases covering 18 cancer types. Thereafter, characteristics of SWI/SNF mutations were depicted and the TMB and MSI status and therapeutic effects of ICIs in the SWI/SNF-mutant and SWI/SNF-non-mutant groups were compared.
Results: SWI/SNF mutations were observed in 21.8% of tumors. Endometrial (54.1%), gallbladder and biliary tract (43.4%), and gastric (33.9%) cancers exhibited remarkably higher SWI/SNF mutational rates than other malignancies. Further, ARID1A was the most frequently mutated SWI/SNF gene, and ARID1A D1850fs was identified as relatively crucial. The TMB value, TMB-high (TMB-H), and MSI-high (MSI-H) proportions corresponding to SWI/SNF-mutant cancers were significantly higher than those corresponding to SWI/SNF-non-mutant cancers (25.8 vs. 5.6 mutations/Mb, 44.3% vs. 10.3%, and 16.0% vs. 0.9%, respectively; all p < 0.0001). Furthermore, these indices were even higher for tumors with co-mutations of SWI/SNF genes and MLL2/3. Regarding immunotherapeutic effects, patients with SWI/SNF variations showed significantly longer progression-free survival (PFS) rates than their SWI/SNF-non-mutant counterparts (hazard ratio [HR], 0.56 [95% confidence interval {CI} 0.44-0.72]; p < 0.0001), and PBRM1 mutations were associated with relatively better ICI treatment outcomes than the other SWI/SNF gene mutations (HR, 0.21 [95% CI 0.12-0.37]; p = 0.0007). Additionally, patients in the SWI/SNF-mutant + TMB-H (HR, 0.48 [95% CI 0.37-0.54]; p < 0.0001) cohorts had longer PFS rates than those in the SWI/SNF-non-mutant + TMB-low cohort.
Conclusions: SWI/SNF complex genes are frequently mutated and are closely associated with TMB-H status, MSI-H status, and superior ICI treatment response in several cancers, such as colorectal cancer, gastric cancer, and non-small cell lung cancer. These findings emphasize the necessity and importance of molecular-level detection and interpretation of SWI/SNF complex mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652899 | PMC |
http://dx.doi.org/10.1186/s12935-022-02757-x | DOI Listing |
J Med Chem
January 2025
Foghorn Therapeutics, 500 Technology Square, Suite 700, Cambridge, Massachusetts 02139, United States.
BRM (SMARCA2) and BRG1 (SMARCA4) are mutually exclusive ATPase subunits of the mSWI/SNF (BAF) chromatin remodeling complex. BAF is an attractive therapeutic target because of its role in transcription, and mutations in the subunits of BAF are common in cancer and neurological disorders. Herein, we report the discovery of compound () as a potent allosteric inhibitor of the dual ATPase subunits from a high-throughput screening hit with a BRM IC of ∼27 μM.
View Article and Find Full Text PDFMod Pathol
January 2025
Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL. Electronic address:
Deep penetrating nevi (DPNs) are characterized by activating mutations in the MAP kinase and Wnt/beta-catenin pathways that result in large melanocytes with increased nuclear atypia, cytoplasmic pigmentation, and often mitotic activity. Together with a lack of maturation, this constellation of findings creates challenges for pathologists to distinguish deep penetrating nevus (DPN) from DPN-like melanoma. To assess the utility of next generation sequencing (NGS) in resolving this diagnostic dilemma, we performed NGS studies on 35 lesions including 24 DPNs and 11 DPN-like melanomas to characterize the specific genomic differences between the two groups and elucidate the genetic events involved in malignant transformation of DPNs.
View Article and Find Full Text PDFEur J Cancer
November 2024
David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
Purpose: MAK683, a first-in-class and highly selective allosteric inhibitor of the embryonic ectoderm development subunit of polycomb repressive complex 2, has shown sustained antitumor activity in tumor xenograft models. This first-in-human phase 1/2 study evaluated the safety, pharmacokinetics (PK), and clinical activity of single-agent MAK683 in advanced malignancies.
Methods: MAK683 was administered fasted once daily or twice daily continuously in 28-day treatment cycles.
J Cell Mol Med
January 2025
Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
Bladder cancer originates from bladder tissues and is the ninth most common type of cancer worldwide. The SWI/SNF (SWItch/sucrose non- fermentable) complex plays a crucial role in regulating various biological processes, such as cell cycle control, DNA damage repair and transcription regulation. The purpose of this article is to examine the functional studies of the SWI/SNF complex in bladder cancer, highlighting new pathways for creating personalised treatment approaches for bladder cancer patients with mutations in the SWI/SNF complex.
View Article and Find Full Text PDFThe ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!