This study found that the cross-linkable zinc acrylic nanosphere aggregates (NAs) as precursors were successfully prepared by a simple one-step synthesis route, and Zn,O dopped-carbon nanocomposites were obtained through temperature-controllable engineering, which showed excellent adsorption capacities for perfluorooctanoic acid (PFOA). A series of experiments were performed to investigate and compare carbon materials for the efficient removal of PFOA. The maximum adsorption capacities of PFOA absorbed on carbon nanospheres aggregates (CNAs) were calculated by the Langmuir (360.98 mg/g) and Sips models (309.65 mg/g). The kinetic model indicated there was chemical adsorption and physical adsorption in the adsorption process. Van der Waals force and electrostatic interactions might be the dominant mechanism of the adsorption process. Additionally, pore-filling also played a role in the adsorption process. Furthermore, the adsorption efficiency was still above 90% after five cycles. The selective adsorption ability was tested through various pollutants (metal ions and dye solutions) absorbed by the CNAs. Our results proved that carbon nanosphere aggregates (CNAs) are expected to be outstanding adsorption materials for the decontamination of PFOA from wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.120540 | DOI Listing |
Int J Biol Macromol
January 2025
School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China. Electronic address:
This study explored a facile method for converting macadamia nutshells into bio-based nanomaterials, including cellulose nanofibers (CNFs) and lignin nanoparticles (LNPs), through deep eutectic solvent (DES) pretreatment coupled with a nanofabrication strategy. Comparisons of the physicochemical, morphological, and structural properties of the CNF and LNPs produced through acidic choline chloride/oxalic acid dihydrate (ACDES) and alkaline KCO/glycerol DES (ALDES) pretreatments were conducted using SEM, TEM, FTIR, XRD, TGA, GPC and 2D NMR. The CNFs obtained from ACDES pretreatment (ACCNFs) exhibited uniform and long filament-like structures with shorter whisker-like nanocrystals.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, China.
Achieving fast conversion and precise regulation of product selectivity in electrochemical CO reduction reaction (CORR) remains a challenge. The space confinement effect provides a theoretical basis for the design of catalysts of different morphology and sizes and reveals the physical phenomena caused by the confinement of electrons and other particles at the nanoscale. In this work, a semi-confinement concept is introduced and a mesoporous silica nanosphere supported Cu catalyst (Cu-MSN) is prepared as a typical example to realize CORR enhancement and product selectivity regulation (methane vs ethylene).
View Article and Find Full Text PDFACS Omega
January 2025
Nanotechnology, IoT and Applied Machine Learning Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh.
Nanoparticles embedded in polymer matrices play a critical role in enhancing the properties and functionalities of composite materials. Detecting and quantifying nanoparticles from optical images (fixed samples-in vitro imaging) is crucial for understanding their distribution, aggregation, and interactions, which can lead to advancements in nanotechnology, materials science, and biomedical research. In this article, we propose an ensembled deep learning approach for automatic nanoparticle detection and oligomerization quantification in a polymer matrix for optical images.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States.
In this work, we describe a computational tool designed to determine the local dielectric constants (ε) of charge-neutral heterogeneous systems by analyzing dipole moment fluctuations from molecular dynamics (MD) trajectories. Unlike conventional methods, our tool can calculate dielectric constants for dynamically evolving selections of molecules within a defined region of space, rather than for fixed sets of molecules. We validated our approach by computing the dielectric constants of TIP3P water nanospheres, achieving results consistent with literature values for bulk water.
View Article and Find Full Text PDFSmall
January 2025
Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, 500007, India.
Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!