Modern agriculture depends highly on pesticides and pharmaceutical preparations, so controlling exposure to these substances in the feed and food chain is essential. This article presents the first study on residues of a broad spectrum of pesticides and veterinary drugs in the diets of dairy cattle. One hundred and two representative samples of the complete diets, including basal feed rations and additional fed concentrate, were collected in three Austrian provinces (Styria, Lower and Upper Austria) in 2019 and 2020. The samples were tested for >700 pesticides, veterinary drugs and related metabolites using a validated method based on liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). In total, 16 residues (13 pesticides and three veterinary drug residues) were detected. > 90% of the diets contained pesticide residues and <10% veterinary drug residues, whereas banned pesticides were not found. The most frequent pesticide residues were fluopyram (62%), piperonyl butoxide (39%) and diethyltoluamide (35%). The following pesticides exceed the default EU maximum residue level (MRL) (10 μg kg) for products exclusively used for animal feed production: Benzovindiflupyr (proportion of samples > MRLs: 1%), bixafen (2%), fluopyram (6%), ipconazole (1%) and tebuconazole (3%). Three residues (dinitrocarbanilide, monensin and nicarbazin) of veterinary drugs were identified, all below the MRLs. Over 60% of the evaluated samples contained mixtures of two to six residues/sample. Only one pesticide (diethyltoluamide) presented a significant difference among regions, with higher concentrations in Upper Austria. Brewery's spent grains were the dietary ingredient that showed the strongest correlation to pesticide residues. These findings evidence the realistic scenario of highly occurrent low doses of pesticides cocktails in the feed/food chain, which may affect the animal, human and environmental health. Since the risk assessments are based on single pesticides, the potential synergistic effect of co-occurring chemicals ("cocktail effect") requires further investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.120626 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!