Dietary restriction through low-calorie intake or intermittent fasting benefits many organs, including the brain. This study investigated the neuroprotective effects of fasting in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. We found that fasting every other day rather than weekly increased the levels of brain-derived neurotrophic factor and glial-derived neurotrophic factor in the nigrostriatal pathway. Therefore, we maintained the animals on alternate-day fasting for 2 weeks and injected MPTP (30 mg/kg/day, intraperitoneally [i.p.]) for five days. We observed that alternate-day fasting attenuated MPTP-induced dopaminergic neuronal loss and astroglial activation in the substantia nigra and the striatum. Moreover, neurochemical analysis using high-performance liquid chromatography showed that alternate-day fasting reduced MPTP-induced depletion of striatal dopamine. Consistent with these results, behavioral tests showed that fasting suppressed the motor impairment caused by MPTP. Furthermore, fasting increased the phosphorylation of phosphatidylinositol-3-kinase and protein kinase B, which are downstream signaling molecules of neurotrophic factors. Fasting also increased the phosphorylation of extracellular signal-regulated protein kinase and cAMP response element-binding protein, further supporting the involvement of neurotrophic factors in the observed neuroprotective effects. Hence, our results demonstrated the dopaminergic neuroprotection of intermittent fasting in an MPTP mouse model of Parkinson's disease, supporting the idea that fasting could be an instrumental tool for preventing neurodegeneration in the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2022.109212 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!