A radiomics-based decision support tool improves lung cancer diagnosis in combination with the Herder score in large lung nodules.

EBioMedicine

Lung Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK; Early Diagnosis and Detection Centre, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK; National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK. Electronic address:

Published: December 2022

AI Article Synopsis

  • Large lung nodules (≥15 mm) have the highest risk of cancer but current risk models are not effective for these larger nodules. A study aimed to create a new classification system that combines deep learning and traditional methods to assess their cancer risk.
  • The study involved 502 patients and used 838 CT scans to develop an automated segmentation model and a radiomics signature, named LN-RPV, to evaluate malignancy risk. The new model was tested against human radiologists and existing scoring systems.
  • Results showed that the customized LN-RPV model outperformed median radiologists and traditional scores in malignancy classification, indicating its potential as a reliable decision-support tool for identifying high-risk lung nodules, which could lead to better

Article Abstract

Background: Large lung nodules (≥15 mm) have the highest risk of malignancy, and may exhibit important differences in phenotypic or clinical characteristics to their smaller counterparts. Existing risk models do not stratify large nodules well. We aimed to develop and validate an integrated segmentation and classification pipeline, incorporating deep-learning and traditional radiomics, to classify large lung nodules according to cancer risk.

Methods: 502 patients from five U.K. centres were recruited to the large-nodule arm of the retrospective LIBRA study between July 2020 and April 2022. 838 CT scans were used for model development, split into training and test sets (70% and 30% respectively). An nnUNet model was trained to automate lung nodule segmentation. A radiomics signature was developed to classify nodules according to malignancy risk. Performance of the radiomics model, termed the large-nodule radiomics predictive vector (LN-RPV), was compared to three radiologists and the Brock and Herder scores.

Findings: 499 patients had technically evaluable scans (mean age 69 ± 11, 257 men, 242 women). In the test set of 252 scans, the nnUNet achieved a DICE score of 0.86, and the LN-RPV achieved an AUC of 0.83 (95% CI 0.77-0.88) for malignancy classification. Performance was higher than the median radiologist (AUC 0.75 [95% CI 0.70-0.81], DeLong p = 0.03). LN-RPV was robust to auto-segmentation (ICC 0.94). For baseline solid nodules in the test set (117 patients), LN-RPV had an AUC of 0.87 (95% CI 0.80-0.93) compared to 0.67 (95% CI 0.55-0.76, DeLong p = 0.002) for the Brock score and 0.83 (95% CI 0.75-0.90, DeLong p = 0.4) for the Herder score. In the international external test set (n = 151), LN-RPV maintained an AUC of 0.75 (95% CI 0.63-0.85). 18 out of 22 (82%) malignant nodules in the Herder 10-70% category in the test set were identified as high risk by the decision-support tool, and may have been referred for earlier intervention.

Interpretation: The model accurately segments and classifies large lung nodules, and may improve upon existing clinical models.

Funding: This project represents independent research funded by: 1) Royal Marsden Partners Cancer Alliance, 2) the Royal Marsden Cancer Charity, 3) the National Institute for Health Research (NIHR) Biomedical Research Centre at the Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, 4) the National Institute for Health Research (NIHR) Biomedical Research Centre at Imperial College London, 5) Cancer Research UK (C309/A31316).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9664396PMC
http://dx.doi.org/10.1016/j.ebiom.2022.104344DOI Listing

Publication Analysis

Top Keywords

large lung
16
lung nodules
16
test set
16
royal marsden
12
herder score
8
nodules
8
083 95%
8
auc 075
8
national institute
8
institute health
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!