Dental pulp cells (DPCs) differentiate into odontoblasts. To observe odontoblastic differentiation, the detection of dentinogenesis-specific molecules such as dentin sialophosphoprotein (DSPP) and the measurement of alkaline phosphatase (ALP) activity are reliable approaches. CCN family member 2 (CCN2) has been proposed as a marker for dentinogenesis. Our recent study revealed that the expression levels of Ccn4, Ccn5, and Ccn6 were changed in accordance with odontoblastic differentiation. Therefore, Ccn4, Ccn5, and Ccn6, as well as Ccn2, could serve as a comprehensive set of markers for dentinogenesis. Here, we describe a method of measuring the Ccns expression levels in differentiating rat DPCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2744-0_19 | DOI Listing |
Front Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
J Oral Biosci
December 2024
Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8549, Japan. Electronic address:
Objectives: This study aimed to elucidate the roles of Prrx1 and Prrx2, homeobox transcription factors, in tooth development and determine whether Prrx2 regulates pannexin 3 (Panx3) expression, which is important in preodontoblasts.
Methods: Tooth sections were prepared from 13.5-, 15.
J Oral Biosci
December 2024
Division of Physiology, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
Objectives: Dental pulp stem cells (DPSCs) are essential for reparative dentinogenesis following damage or infection. DPSCs surrounding the blood vessels in the central region of the dental pulp actively proliferate after tooth injury and differentiate into new odontoblast-like cells or odontoblasts to form reparative dentin. However, the signaling pathways involved in undifferentiated and osteodifferentiated DPSCs under inflammatory conditions remain unclear.
View Article and Find Full Text PDFCell Biochem Biophys
December 2024
Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
Apical periodontitis is an inflammatory disease caused by bacterial infection in the root canal that spreads to the apical periodontal tissues, resulting in bone resorption around the root apex as the disease progresses. Vascular endothelial growth factor (VEGF), a growth factor involved in angiogenesis, plays an important role in bone remodeling. We reported that caffeic acid phenethyl ester (CAPE), a bioactive substance of propolis, induces VEGF in odontoblast-like cells and dental pulp cells.
View Article and Find Full Text PDFJ Clin Med
November 2024
Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan.
Dental pulp (DP) is a connective tissue composed of various cell types, including fibroblasts, neurons, adipocytes, endothelial cells, and odontoblasts. It contains a rich supply of pluripotent stem cells, making it an important resource for cell-based regenerative medicine. However, current stem cell collection methods rely heavily on the enzymatic digestion of dissected DP tissue to isolate and propagate primary cells, which often results in low recovery rates and reduced cell survival, particularly from deciduous teeth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!