Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The exploration of polysaccharides from microorganisms is of great importance. In this study, a new type of exopolysaccharide excreted by Fusarium merismoides A6 (FM-EPS) was isolated, and the extraction conditions were optimized using a response surface methodology (RSM). The extraction temperature at 0 °C, a precipitation time of 7.83 h, and an ethanol precipitation concentration of 77.64% were predicted and proved to be the best extraction conditions with the maximum extraction yield of 0.74 g/mL. Then, two fractions of F. merismoides A6 exopolysaccharides (FM-EPS1 and FM-EPS2) were obtained through DEAE Sepharose fast flow column chromatography. As indicated by monosaccharide composition analysis, both fractions mainly consisted of mannose, glucose, galactose, and ribose, with an average molecular weight of 5.14 × 10 and 6.50 × 10 g/mol, respectively. FT-IR and NMR spectroscopy indicated the FM-EPSs had both α- and β-glycosidic bonds. Moreover, the determination of antioxidant and antiproliferative activities in vitro proved that FM-EPSs had good antioxidant activities and antiproliferation activities. FM-EPS1 showed stronger antioxidant activities than FM-EPS2. FM-EPS2 showed antiproliferation activities on HeLa and HepG2 cells, while FM-EPS1 had no obvious antiproliferative activity. Therefore, FM-EPSs could be explored as potential antioxidant and anticancer agent applied in food, feed, nutraceutical, pharmaceutical, cosmetics, and chemical industries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9943999 | PMC |
http://dx.doi.org/10.1007/s42770-022-00842-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!