Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The protein cargo of extracellular vesicles (EVs) determines their impact on recipient cell types and the downstream effects on biological function. Environmental cues can modify EV loading with proteins derived from the plasma membrane via endocytosis, obtained from the preexisting cytosolic pool via active sorting, or packaging with newly synthesized proteins drawn from trans-golgi networks. Given the major impact these pathways exert on EV content and functional potential, it is important to study how defined stimuli influence protein sorting into these vesicles for dispersal. To this end, pSILAC-based approaches can be used to pulse/trace the origins of EV protein content and thereby provide valuable insight into vesicle biology and likely effects on intercellular communication in diverse settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2863-8_4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!