Sensitive and reliable detection of the p53 gene plays a significant role in precise cancer targeting and in fundamental research. However, the sensitivity of existing p53 gene detection approaches remains to be improved. Herein, we develop a target recognition assisted-primer exchange reaction (Ta-PER) for sensitive analysis of the p53 gene. Ta-PER was initiated by the recognition of a designed dumbbell structure probe by the p53 gene. In Ta-PER, the primer exchange reaction (PER) was combined with molecular beacon-based chain recycling to construct the signal amplification process. Through integrating target recognition with PER-based signal amplification, Ta-PER was established and exhibited a high detection sensitivity, with a limit of detection as low as 56 fM. In addition, the approach was also used to detect the p53 gene in normal HeLa cells and amatoxin-treated HeLa cells. The high level of the p53 gene in amatoxin-treated HeLa cells, which was approximately 1.67 times higher than that in HeLa cell extract, indicated the apoptosis of cells and suggested the promising prospect of the approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-022-04420-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!