2D MXenes have diverse and chemically tunable optical properties that arise from an interplay between free carriers, interband transitions, and plasmon resonances. The nature of photoexcitations and their dynamics in three different members of the MXene family, Ti C , Mo Ti C , and Nb C, are investigated using two complementary pump-probe techniques, transient optical absorption, and time-resolved terahertz (THz) spectroscopy. Measurements reveal pronounced plasmonic effects in the visible and near-IR in all three. Optical excitation, with either 400 or 800 nm pulses, results in a rapid increase in lattice temperature, evidenced by a pronounced broadening of the plasmon mode that presents as a plasmon bleach in transient absorption measurements. Observed kinetics of plasmon bleach recovery provide a means to monitor lattice cooling. Remarkably slow cooling, proceeding over hundreds of picoseconds to nanoseconds time scales, implies MXenes have low thermal conductivities. The slowest recovery kinetics are observed in the MXene with the highest free carrier density, viz. Ti C , that supports phonon scattering by free carriers as a possible mechanism limiting thermal conductivity. These new insights into photoexcitation dynamics can facilitate their applications in photothermal solar energy conversion, plasmonic devices, and even photothermal therapy and drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202208659DOI Listing

Publication Analysis

Top Keywords

free carriers
12
plasmon bleach
8
ultrafast spectroscopy
4
spectroscopy plasmons
4
free
4
plasmons free
4
carriers mxenes
4
mxenes mxenes
4
mxenes diverse
4
diverse chemically
4

Similar Publications

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

Advances in bacterial glycoprotein engineering: A critical review of current technologies, emerging challenges, and future directions.

Biotechnol Adv

January 2025

TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China. Electronic address:

Protein glycosylation, which involves the addition of carbohydrate chains to amino acid side chains, imparts essential properties to proteins, offering immense potential in synthetic biology applications. Despite its importance, natural glycosylation pathways present several limitations, highlighting the need for new tools to better understand glycan structures, recognition, metabolism, and biosynthesis, and to facilitate the production of biologically relevant glycoproteins. The field of bacterial glycoengineering has gained significant attention due to the ongoing discovery and study of bacterial glycosylation systems.

View Article and Find Full Text PDF

In the current study, calcium alginate was used as a carrier for Agaricus bisporus CU13 laccase immobilization, with an immobilization yield of the entrapped laccase of 91.95%. Free and immobilized enzymes showed their best enzyme activity at 60 °C as an optimum temperature.

View Article and Find Full Text PDF

Proton- and deuteron-induced cross sections on natural platinum.

Appl Radiat Isot

December 2024

Nuclear & Chemical Sciences Division, Lawrence Livermore National Laboratory, United States.

Light-ion irradiations on natural platinum were performed to measure gold-radioisotope cross sections and isotope ratios, as well as to produce a carrier-free final product. Experimental cross sections are compared to TENDL-2023. There is good agreement with this work's results and other published literature values.

View Article and Find Full Text PDF

Ursodeoxycholic acid grafted chitosan oligosaccharide self-assembled micelles with enhanced oral absorption and antidiabetic effect of oleanolic acid.

Food Chem

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China. Electronic address:

Oleanolic acid (OA) is a food-derived bioactive component with antidiabetic activity, but its water solubility and oral bioavailability are notably restricted. In this study, to overcome these limitations, ursodeoxycholic acid-modified chitosan oligosaccharide (UCOS) was synthesized to encapsulate OA in self-assembled nanomicelles (UCOS-OA). The encapsulation efficiency and drug loading of UCOS-OA were 86 % and 11 %, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!