Bioactive compounds found in plants also have pharmacological antiviral effects. Berberine (BBR), an alkaloid found naturally in plants, is one of the phytochemicals with a wide range of biological activities, including antiviral, anticancer, anti-inflammatory and anti-inflammatory. In this study, we firstly aimed to predict pIC50 values for selcted compounds and then extract the binding patterns of berberine and its derivatives in the Sars Cov-2 Master Protease structure via employing molecular docking approache. Our results showed that berberine and its derivatives have good binding affinities towared Sars Cov2 main protease protein. Based on docking results the pharamaccokinetic studies for berberine, berberrubine, demethylen-berberine, jatrorrhizin, and thalifendine, were conducted and showed a good pharamacokinetic properties as an oral drugs. For deep inspection, we utiilized molecular dynmaics simulation to examine the Sars Cov2 main protease-ligand stabilities. The molecular dynamics simulation and PCA investigations revealed that thalifendine have a strong willing to act as good bindinder to SARS-CoV-2 protease. Further, the network based pharamacology showed that these drugs mediate different pathways such as human T-cell leukemia virus 1 infection, viral carcinogenesis, human immunodeficiency virus 1 infection, kaposi sarcoma-associated herpesvirus infection and epstein-Barr virus infection.The findings of this study have an important recomendation for thalifendine for more in vivo and in vitro studies to work.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2022.2142848 | DOI Listing |
J Biophotonics
January 2025
State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.
Three-photon fluorescence (3PF) microscopy encounters significant challenges in biological research and clinical applications, primarily due to the limited availability of high-performance probes. We took a shortcut by exploring the excellent 3PF property of berberine hydrochloride (BH), a clinically utilized drug derived from the traditional Chinese medicine, Coptis. Capitalizing on its renal metabolism characteristics, we employed BH for in vivo 3PF microscopic imaging of the mouse kidney.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
Cancer is a major global concern. Despite considerable advancements in cancer therapy and control, there are still large gaps and requirements for development. In recent years, various naturally occurring anticancer drugs have been derived from natural resources, such as alkaloids, glycosides, terpenes, terpenoids, flavones, and polyphenols.
View Article and Find Full Text PDFAm J Chin Med
January 2025
Department of Pathophysiology.
The accumulation of aging cells significantly contributes to chronic inflammatory diseases such as atherosclerosis. Human carotid artery single-cell sequencing has shown that large numbers of aging foam cells are present in the plaques of human patients. Berberine (BBR) has been shown to inhibit cell senescence, however, the mechanisms involved in its treatment of atherosclerotic senescence have not yet been determined.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
College of Marine Sciences, Beibu Gulf University, Qinzhou, China.
Correction for 'A novel platinum(II) complex with a berberine derivative as a potential antitumor agent targeting G-quadruplex DNA' by Shu-Lin Zhang , , 2025, https://doi.org/10.1039/d4ob01705f.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
Research and Development cell, Department of Intellectual property Rights, Lovely Professional University, Jalandhar- Delhi Grand Trunk Rd., Phagwara, Punjab, 144411, India.
Purpose Of Review: This review explores the mechanistic pathways and clinical implications of phytochemicals in obesity management, addressing the global health crisis of obesity and the pressing need for effective, natural strategies to combat this epidemic.
Recent Findings: Phytochemicals demonstrate significant potential in obesity control through various molecular mechanisms. These include the modulation of adipogenesis, regulation of lipid metabolism, enhancement of energy expenditure, and suppression of appetite.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!