Purpose: This study aims to describe and assess the current stage of the artificial intelligence (AI) technology integration in preventive orthopaedics of the knee and hip joints.

Materials And Methods: The study was conducted in strict compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. Literature databases were searched for articles describing the development and validation of AI models aimed at diagnosing knee or hip joint pathologies or predicting their development or course in patients. The quality of the included articles was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and QUADAS-AI tools.

Results: 56 articles were found that meet all the inclusion criteria. We identified two problems that block the full integration of AI into the routine of an orthopaedic physician. The first of them is related to the insufficient amount, variety and quality of data for training, and validation and testing of AI models. The second problem is the rarity of rational evaluation of models, which is why their real quality cannot always be evaluated.

Conclusion: The vastness and relevance of the studied topic are beyond doubt. Qualitative and optimally validated models exist in all four scopes considered. Additional optimization and confirmation of the models' quality on various datasets are the last technical stumbling blocks for creating usable software and integrating them into the routine of an orthopaedic physician.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00264-022-05628-2DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
preventive orthopaedics
8
knee hip
8
routine orthopaedic
8
orthopaedic physician
8
quality
5
systematic review
4
review artificial
4
intelligence tack
4
tack preventive
4

Similar Publications

Deep learning-based design and experimental validation of a medicine-like human antibody library.

Brief Bioinform

November 2024

Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.

Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).

View Article and Find Full Text PDF

Accurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.

View Article and Find Full Text PDF

AI comes to the Nobel Prize and drug discovery.

J Pharm Anal

November 2024

College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

View Article and Find Full Text PDF

The association between total social exposure and incident multimorbidity: A population-based cohort study.

SSM Popul Health

March 2025

Dalla Lana School of Public Health, University of Toronto, Health Sciences Building, 155 College Street, 6th Floor, Toronto, Ontario, M5T 3M7, Canada.

Background: Multimorbidity, the co-occurrence of two or more chronic conditions, is associated with the social determinants of health. Using comprehensive linked population-representative data, we sought to understand the combined effect of multiple social determinants on multimorbidity incidence in Ontario, Canada.

Methods: Ontario respondents aged 20-55 in 2001-2011 cycles of the Canadian Community Health Survey were linked to administrative health data ascertain multimorbidity status until 2022.

View Article and Find Full Text PDF

Multimodal artificial intelligence system for detecting a small esophageal high-grade squamous intraepithelial neoplasia: A case report.

World J Gastrointest Endosc

January 2025

Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.

Background: Recent advancements in artificial intelligence (AI) have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases. AI has shown great promise in clinical practice, particularly for diagnostic support, offering real-time insights into complex conditions such as esophageal squamous cell carcinoma.

Case Summary: In this study, we introduce a multimodal AI system that successfully identified and delineated a small and flat carcinoma during esophagogastroduodenoscopy, highlighting its potential for early detection of malignancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!