Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Surface Soil Moisture (SSM) information is needed for agricultural water resource management, hydrology and climate analysis applications. Temporal and spatial sampling by the space-borne instruments designed to retrieve SSM is, however, limited by the orbit and sensors of the satellites. We produced a Global Daily-scale Soil Moisture Fusion Dataset (GDSMFD) with 25 km spatial resolution (2011~2018) by applying the Triple Collocation Analysis (TCA) and Linear Weight Fusion (LWF) methods. Using five metrics, the GDSMFD was evaluated against in-situ soil moisture measurements from ten ground observation networks and compared with the prefusion SSM products. Results indicated that the GDSMFD was consistent with in-situ soil moisture measurements, the minimum of root mean square error values of GDSMFD was only 0.036 cm/cm. Moreover, the GDSMFD had a good global coverage with mean Global Coverage Fraction (GCF) of 0.672 and the maximum GCF of 0.837. GDSMFD performed well in accuracy and global coverage fraction, making it valuable in applications to the global climate change monitoring, drought monitoring and hydrological monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652308 | PMC |
http://dx.doi.org/10.1038/s41597-022-01772-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!