Density functional theory predictions of binding energies and reaction barriers provide invaluable data for analyzing chemical transformations in heterogeneous catalysis. For high accuracy, effects of band structure and coverage, as well as the local bond strength in both covalent and non-covalent interactions, must be reliably described and much focus has been put on improving functionals to this end. Here, we show that a correction from higher-level calculations on small metal clusters can be applied to improve periodic band structure adsorption energies and barriers. We benchmark against 38 reliable experimental covalent and non-covalent adsorption energies and five activation barriers with mean absolute errors of 2.2 kcal mol, 2.7 kcal mol, and 1.1 kcal mol, respectively, which are lower than for functionals widely used and tested for surface science evaluations, such as BEEF-vdW and RPBE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652424 | PMC |
http://dx.doi.org/10.1038/s41467-022-34507-y | DOI Listing |
Dye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Science, Chemistry Department, Cairo University, Giza, 12613, Egypt.
The swift rise of hazardous dye effluent from diverse sectors continues to be a severe public health problem and a top priority for environmental preservation, presenting a significant obstacle to the current conventional water treatment systems. This study aims to develop an efficient and reusable approach for removing cresyl fast violet dye using mullite nanoparticles. Some factors such as pH, nano-mullite dosage, agitation speed, time, and others that affect the removal process were studied.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, CHINA.
Suboptimal spatial utilization and inefficient access to internal porosity preclude porous carbon cathodes from delivering high energy density in zinc-ion hybrid capacitors (ZIHCs). Inspired by the function of capillaries in biological systems, this study proposes a facile coordination-pyrolysis method to fabricate thin-walled hollow carbon nanofibers (CNFs) with optimized pore structure and surface functional groups for ZHICs. The capillary-like CNFs maximize the electrode/electrolyte interface area, facilitating the optimal utilization of energy storage sites.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Graduate Program in Environmental Engineering (PPGEA), Federal University of Technology, Campus Londrina, Paraná 86036-370, Brazil.
This study assessed the phytoremediation potential of grown in Oxisol contaminated with varying zinc concentrations. was cultivated in soil with Zn levels from 0 to 1920 mg kg. Growth parameters, Zn concentrations in plant parts, bioaccumulation, and translocation factors were measured.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:
Proton exchange membrane fuel cell (PEMFC) with ultra-low Pt loading is highly desirable but confronts challenges of deficient activity and durability for practical application. Herein, we report a newly integrated catalyst layer based on 3D porous B-doped graphene (3D-PBG) with the atomic layer deposition of Pt (Pt/3D-PBG) for PEMFC, in which highly graphitized 3D-PBG not only provides a robust framework to support Pt but also B dopants further enhances the deposition of Pt and their electronic interaction, resulting in high-performance PEMFC at ultra-low Pt loading. The cell with Pt/3D-PBG at 80.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!