Boronate affinity paper spray mass spectrometry for determination of elevated levels of catecholamines in urine.

Anal Chim Acta

Laboratory of Organic Chemistry, Wageningen University, 6708, WE, Wageningen, the Netherlands; Wageningen Food Safety Research (WFSR), Wageningen University & Research, 6700, AE, Wageningen, the Netherlands. Electronic address:

Published: December 2022

The analysis of catecholamines, such as dopamine, epinephrine and norepinephrine in urine can be used in the diagnosis of certain pathologies, such as hormone-producing tumors. Here, a fast and simple quantitative boronate affinity paper spray tandem mass spectrometric (PS-MS/MS) method is established, which can improve selectivity and reduce ion suppression without needing any instrumental chromatography. We use here the property of boronic acids, which can selectively bind ortho-diol-containing compounds under alkaline conditions. Paper tip modification and catechol enrichment protocols were developed to selectively bind, clean up and subsequently desorb such catecholamines. Standard catecholamine solutions, as well as human urine samples were analyzed with the PS-MS(/MS) method, which is fast, cheap and easy-to-operate compared to HPLC-MS/MS. Despite its high simplicity, boronate affinity PS-MS/MS exhibits good performance compared to HPLC-MS/MS in human urine analysis in terms of precision (2.1%-7.2% vs. 1.1%-2.9%) and accuracy (-10.2%-9.3% vs. -4.8%-5.1%), and a physiologically relevant limit of detection (0.027-0.12 μg mL). The boronate affinity PS-MS/MS clearly achieved the detection limits that would allow the fast analysis of urine samples for clinical purposes, such as screening for pheochromocytoma (exceeding 0.5 μg mL).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2022.340508DOI Listing

Publication Analysis

Top Keywords

boronate affinity
16
affinity paper
8
paper spray
8
urine analysis
8
ps-ms/ms method
8
selectively bind
8
human urine
8
urine samples
8
compared hplc-ms/ms
8
affinity ps-ms/ms
8

Similar Publications

Carbonless DNA.

Phys Chem Chem Phys

January 2025

Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.

Carbonless DNA was designed by replacing all carbon atoms in the standard DNA building blocks with boron and nitrogen, ensuring isoelectronicity. Electronic structure quantum chemistry methods (DFT(ωB97XD)/aug-cc-pVDZ) were employed to study both the individual building blocks and the larger carbon-free DNA fragments. The reliability of the results was validated by comparing selected structures and binding energies using more accurate methods such as MP2, CCSD, and SAPT2+3(CCD)δ.

View Article and Find Full Text PDF

β-Lactams are the most widely used antibiotics for the treatment of bacterial infections because of their proven track record of safety and efficacy. However, susceptibility to β-lactam antibiotics is continually eroded by resistance mechanisms. Emerging multidrug-resistant (MDR) strains possessing altered alleles (encoding PBP2) pose a global health emergency as they threaten the utility of ceftriaxone, the last remaining outpatient antibiotic.

View Article and Find Full Text PDF

Interaction of Vitamin D-BODIPY With Fat Cells and the Link to Obesity-associated Vitamin D Deficiency.

Anticancer Res

January 2025

Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, U.S.A.;

Background/aim: Obese individuals often exhibit vitamin D deficiency, potentially due to sequestration in fat cells. Little is known about how vitamin D enters adipocytes and associates with the intracellular lipid droplet.

Materials And Methods: Newly differentiated human and mouse (3T3-L1) adipocytes and primary mouse adipocytes were treated with vitamin D covalently linked to green fluorescent BODIPY (VitD-B) or Green BODIPY (GB) as control.

View Article and Find Full Text PDF

Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.

View Article and Find Full Text PDF

Living cell systems possess multiple isolated compartments that can spatially confine complex substances and shield them from each other to allow for feedback reactions. In this work, a bioinspired design of metal-organic frameworks (MOFs) with well-defined multishelled matrices was fabricated as a hierarchical host for multiple guest substances including fluorogenic molecules and catalytic nanoparticles (NPs) at the separated locations for the development of a dual-mode glycoprotein assay. The multispatial-compartmental zeolitic imidazolate framework-8 (ZIF-8) constituents were synthesized via epitaxial shell-by-shell overgrowth to guide the integration and spatial organization of host guests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!