The global health status is highly affected by the growing pace of urbanization, new lifestyles, climate changes, and resource exploitation. Modern technologies pave a promising way to deal with severe concerns toward sustainable development. Herein, we provided a comprehensive review of some popular biotechnological advancements regarding the progress achieved in water, food, and medicine, as the most substantial fields related to public health. The emergence of novel organic/inorganic materials has brought about significant improvement in conventional water treatment techniques, anti-fouling approaches, anti-microbial agents, food processing, biosensors, drug delivery systems, and implants. Particularly, a growing interest has been devoted to nanomaterials and their application for developing novel structures or improving the characteristics of standard components. Also, bioinspired materials have been widely used to improve the performance, efficiency, accuracy, stability, safety, and cost-effectiveness of traditional systems. On the other side, the fabrication of innovative devices for precisely monitoring and managing various ecosystem and human health issues is of great importance. Above all, exceptional advancements in designing ion-selective electrodes (ISEs), microelectromechanical systems (MEMs), and implantable medical devices have altered the future landscape of environmental and biomedical research. This review paper aimed to shed light on the wide-ranging materials and devices that have been developed for health applications and mainly focused on the impact of nanotechnology in this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.137185 | DOI Listing |
Med Int (Lond)
December 2024
Department of Clinical and Experimental Medicine, Endocrine Unit 2, University of Pisa, I-56122 Pisa, Italy.
The limitations of two-dimensional (2D) models in cancer research have hindered progress in fully understanding the complexities of drug resistance and therapeutic failures. However, three-dimensional (3D) models provide a more accurate representation of environments, capturing critical cellular interactions and dynamics that are essential in evaluating the efficacy and toxicity of tyrosine kinase inhibitors (TKIs). These advanced models enable researchers to explore drug resistance mechanisms with greater precision, optimizing treatment strategies and improving the predictive accuracy of clinical outcomes.
View Article and Find Full Text PDFInt J Surg
October 2024
Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia.
Cervical cancer ranks as the fourth most common cancer among women globally, posing a significant mortality risk. Persistent infection with high-risk human papillomavirus (HPV) is the primary instigator of cervical cancer development, often alongside co-infection with other viruses, precipitating various malignancies. This study aimed to explore recent biotechnological advances in understanding HPV infection dynamics, host interactions, and its role in oncogenesis.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University "G. D'Annunzio", Chieti, Italy.
The transmembrane glycoproteins Trop-1/EpCAM and Trop-2 independently trigger Ca and kinase signals for cell growth and tumor progression. Our findings indicated that Trop-1 and Trop-2 tightly colocalize at macroscopic, ruffle-like protrusions (RLP), that elevate from the cell perimeter, and locally recur over hundreds of seconds. These previously unrecognized elevated membrane regions ≥20 µm-long, up to 1.
View Article and Find Full Text PDFCurr Opin Biotechnol
January 2025
Department of Plant and Microbial Biology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA. Electronic address:
The integration of 3D bioprinting into plant science and biotechnology is revolutionizing research and applications. While many high-throughput techniques have advanced plant biology, replicating the complex 3D organization and cellular environments of plant tissues remains a significant challenge. Traditional 2D culture systems fall short of capturing the necessary spatial context for accurate studies of cell behavior, gene expression, and tissue development.
View Article and Find Full Text PDFInt J Stroke
January 2025
Department of Neurology, Grady memorial Hospital, Emory University, Atlanta, USA.
Background: Mechanical thrombectomy (MT) is the standard of care for eligible acute ischemic stroke (AIS) patients with large vessel occlusion (LVO) since 2015.
Aim: Our aim was to determine the key challenges for MT implementation and access worldwide.
Methods: We conducted an international online survey consisting of 37 questions, distributed through the World Stroke Organization network, and as invited by co-authors between December 2022 and March 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!