A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CXCR4 mediates the effects of IGF-1R signaling in rodent bone homeostasis and fracture repair. | LitMetric

CXCR4 mediates the effects of IGF-1R signaling in rodent bone homeostasis and fracture repair.

Bone

Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA; Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA. Electronic address:

Published: January 2023

Non-union fractures have considerable clinical and economic burdens and yet the underlying pathogenesis remains largely undetermined. The fracture healing process involves cellular differentiation, callus formation and remodeling, and implies the recruitment and differentiation of mesenchymal stem cells that are not fully characterized. C-X-C chemokine receptor 4 (CXCR4) and Insulin-like growth factor 1 receptor (IGF-1R) are expressed in the fracture callus, but their interactions still remain elusive. We hypothesized that the regulation of CXCR4 by IGF-1R signaling is essential to maintain the bone homeostasis and to promote fracture repair. By using a combination of in vivo and in vitro approaches, we found that conditional ablation of IGF-1R in osteochondroprogenitors led to defects in bone formation and mineralization that associated with altered expression of CXCR4 by a discrete population of endosteal cells. These defects were corrected by AMD3100 (a CXCR4 antagonist). Furthermore, we found that the inducible ablation of IGF-1R in osteochondroprogenitors led to fracture healing failure, that associated with an altered expression of CXCR4. In vivo AMD3100 treatment improved fracture healing and normalized CXCR4 expression. Moreover, we determined that these effects were mediated through the IGF-1R/Insulin receptor substrate 1 (IRS-1) signaling pathway. Taken together, our studies identified a novel population of endosteal cells that is functionally regulated through the modulation of CXCR4 by IGF-1R signaling, and such control is essential in bone homeostasis and fracture healing. Knowledge gained from these studies has the potential to accelerate the development of novel therapeutic interventions by targeting CXCR4 signaling to treat non-unions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057209PMC
http://dx.doi.org/10.1016/j.bone.2022.116600DOI Listing

Publication Analysis

Top Keywords

fracture healing
16
igf-1r signaling
12
bone homeostasis
12
cxcr4
9
homeostasis fracture
8
fracture repair
8
cxcr4 igf-1r
8
ablation igf-1r
8
igf-1r osteochondroprogenitors
8
osteochondroprogenitors led
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!