A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molten-salts assisted preparation of iron-nitrogen-carbon catalyst for efficient degradation of acetaminophen by periodate activation. | LitMetric

Molten-salts assisted preparation of iron-nitrogen-carbon catalyst for efficient degradation of acetaminophen by periodate activation.

Sci Total Environ

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China. Electronic address:

Published: February 2023

Highly efficient and stable heterogeneous catalysts were desired to activate periodate (PI) for sustainable pollution control. Herein, iron-nitrogen-carbon catalyst was synthesized using a facile molten-salts mediated pyrolysis strategy (denoted as FeNC-MS) and employed to activate PI for the degradation of acetaminophen (ACE). Compared with iron-nitrogen-carbon catalyst prepared by direct pyrolysis method (marked as FeNC), FeNC-MS exhibited superior catalytic activity due to its large specific surface area (1600 m g) and the abundance of FeN sites. The batch experiments revealed that FeNC/PI process achieved 37 % ACE removal within 20 min, while ACE removal in FeNC-MS/PI process was 98 % under the identical conditions. Integrated with electron paramagnetic resonance tests, quenching experiments, chemical probe identification, and electrochemical experiments, we demonstrated that FeNC-MS-PI complexes-mediated electron transfer was the predominant mechanism for the oxidation of ACE. Further analysis disclosed that FeN sites in FeNC-MS were the main active sites for the activation of PI. Additionally, FeNC-MS/PI process exhibited significant resistance to humic acid and background electrolyte, and avoided the secondary pollution imposed by Fe leaching. The possible degradation pathways of ACE were proposed. The germination experiments of lettuce seeds showed that the ecotoxicity of ACE solution was significantly reduced after treatment with FeNC-MS/PI process. Overall, this study provided a facile strategy for the synthesis of efficient iron-nitrogen-carbon catalysts and gained fundamental insight into the mechanism of PI activation by iron-nitrogen-carbon catalysts for pollutants degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160001DOI Listing

Publication Analysis

Top Keywords

iron-nitrogen-carbon catalyst
12
fenc-ms/pi process
12
degradation acetaminophen
8
fen sites
8
ace removal
8
iron-nitrogen-carbon catalysts
8
ace
6
iron-nitrogen-carbon
5
molten-salts assisted
4
assisted preparation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!