A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatial effects of urban green infrastructure on instream water quality assessed by chemical and sensory indicators. | LitMetric

AI Article Synopsis

  • Urban green infrastructure successfully reduces stormwater runoff volume and pollutants, but its spatial impacts need further understanding.
  • A study in Suzhou, China, involved 144 surface water quality sampling points to assess chemical and sensory aspects, revealing significant spatial variations in water quality, with phosphorus-limited eutrophic conditions present.
  • Results indicated that green spaces, especially within a 100 m buffer along waterways and roadsides, play a crucial role in managing nutrient loads in surface water and should be prioritized in urban planning strategies.

Article Abstract

Urban green infrastructure has been simulated effectively and economically to reduce volume and pollutants of stormwater runoffs but its spatial effects remain unclear. A snap sampling campaign was carried out for surface water quality in the downtown waterway network of a pilot sponge city (Suzhou) in China, dividing into 7 subwatersheds according to the digital elevation map. In total, 144 sampling points were investigated and measured for chemical quality of surface water while 68 out of the sampling points had a sensory evaluation questionnaire interview for water quality with 321 respondents, in whom the native residents scored a significant spatiality of water quality. The downtown waterway network had phosphorus-limited eutrophic surface water with total nitrogen worse than Class V of the national guidelines. Chemical and sensory evaluation indexes of surface water quality had significant spatial consistency (p < 0.001). All types of green spaces (%) in subwatershed, especially along the urban waterway network (waterfront) and roadside, and in the 100 m riparian buffer zone, significantly influenced nutrient loads in surface water. Findings of the present study suggest that the 100 m riparian buffer zone would be priority areas and the waterfront and roadside should be the highly efficient spots for planning strategy on urban green infrastructure implementation to reduce nutrient loads in surface water and to improve urban landscape aesthetics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160088DOI Listing

Publication Analysis

Top Keywords

surface water
24
water quality
20
urban green
12
green infrastructure
12
waterway network
12
water
9
spatial effects
8
chemical sensory
8
quality downtown
8
downtown waterway
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!