Paclitaxel resistance related to nuclear envelope structural sturdiness.

Drug Resist Updat

Department of Obstetrics, Gynecology and Reproductive Sciences, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA. Electronic address:

Published: December 2022

Taxanes (Taxol/paclitaxel, Docetaxel/taxotere) are a key group of successful drugs commonly used in chemotherapy to treat several major malignant tumors also as a front-line agent in combination with carboplatin/cisplatin, as well as a second line drug with a dose dense regimen following recurrence. Overall, the response to paclitaxel is excellent, though drug resistance inevitably develops in subsequent treatments. The commonly accepted mechanism of action is that the hindrance of microtubule function by paclitaxel leads to cell cycle arrest at mitosis, and subsequent apoptosis. The mechanisms for resistance to paclitaxel have also been extensively investigated, such as ABC transporter overexpression, altered signaling and apoptotic gene expression to resist cell death, and changes associated with microtubules to reduce influences of the drugs. Meanwhile, another important mechanism of paclitaxel resistance has been proposed: increased nuclear lamina/envelope sturdiness to retard the breaking of nuclear envelop and the paclitaxel-induced multinucleation as well as the formation of multiple micronuclei. Here in this review, we focus on experimental findings and ideas on the mechanism of paclitaxel resistance related to cancer nuclear envelope, to provide new insights on overcoming paclitaxel resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drup.2022.100881DOI Listing

Publication Analysis

Top Keywords

paclitaxel resistance
16
nuclear envelope
8
mechanism paclitaxel
8
paclitaxel
7
resistance
5
nuclear
4
resistance nuclear
4
envelope structural
4
structural sturdiness
4
sturdiness taxanes
4

Similar Publications

Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.

View Article and Find Full Text PDF

Background: Chemoresistance is a major obstacle in high-grade serous carcinoma (HGSC) treatment. Although many patients initially respond to chemotherapy, the majority of them relapse due to Carboplatin and Paclitaxel resistance. Drug repurposing has surfaced as a potentially effective strategy that works synergically with standard chemotherapy to bypass chemoresistance.

View Article and Find Full Text PDF

The autotaxin-lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies highlight the promise of ATX/LPAR inhibitors in combination with conventional chemotherapeutic drugs to overcome some forms of this resistance, representing a novel therapeutic strategy.

View Article and Find Full Text PDF

: Pancreatic ductal adenocarcinoma (PDAC), expecting to be the second leading cause of cancer deaths by 2030, resists immune checkpoint therapies due to its immunosuppressive tumor microenvironment (TME). Leukemia inhibitory factor (LIF) is a key target in PDAC, promoting stemness, epithelial-mesenchymal transition (EMT), and therapy resistance. Phase 1 clinical trials showed anti-LIF therapy is safe but with limited efficacy, suggesting better outcomes when combined with chemotherapy, radiotherapy, or immunotherapy.

View Article and Find Full Text PDF

Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review.

Int J Biol Macromol

January 2025

Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China. Electronic address:

Lipid nanoparticles are obtaining significant attention in cancer treatment because of their efficacy at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer drugs to the tumor site, especially upon HA modification, a polymer that is known to target tumors overexpressing CD44. HA is promising in cancer therapy because it taregtes tumor cells by binding onto CD44 receptors, which are often upregulated in cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!