Effects of dietary fiber on obesity-related traits in previous studies were inconsistent. The aim of the present study was to explore whether variants in genes related to satiety and appetite can modulate the effect of dietary fiber on obesity-related traits. Fifty-one overweight or obese adults were randomly allocated to two groups to consume control biscuits (n = 24) or biscuits containing defatted flaxseed flour (n = 27) at breakfast for 8 wk. Four single-nucleotide polymorphisms related to satiety and appetite were genotyped: rs11076023 on the FTO gene, rs16147 on the NPY gene, rs155971 on the PCSK1 gene, and rs6265 on the BDNF gene. A linear regression model was used to evaluate the gene-diet interaction between obesity-related traits. Compared with control biscuits, defatted flaxseed-flour biscuits significantly reduced body weight (P = 0.001) and body mass index (BMI) (P = 0.001) in A-allele carriers (AA + AT) of rs11076023 on the FTO gene but not in non-carriers (TT) (P for the interaction = 0.005 and 0.006) and decreased fasting serum glucose in participants with CC genotype (P = 0.019) but had less effect in T-allele carriers (TT + TC) (P = 0.021) of rs16147 on the NPY gene (P for the interaction = 0.002). Compared with the control biscuits, defatted flaxseed flour significantly reduced body weight (P < 0.001) in T-allele carriers (TT + TC) of rs155971 on the PCSK1 gene but not in non-carriers (CC) (P for the interaction = 0.041) and reduced body weight (P = 0.001) and BMI (P < 0.001) in A-allele carriers (AA + AG) of rs6265 on the BDNF gene but not non-carriers (GG) (P for the interaction = 0.017 and 0.018). Variants of genes related to satiety and appetite could modulate the effect of defatted flaxseed flour on obesity-related traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nut.2022.111870 | DOI Listing |
Biosci Biotechnol Biochem
January 2025
Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
Obesity, often driven by high-fat diets (HFD), is a major global health issue, necessitating effective preventive measures. Tetragonia tetragonoides, a plant with known medicinal properties, has not been extensively studied for its effects on HFD-induced obesity and related genetic changes in mice. This study explores the impact of Tetragonia tetragonoides extract (TTE; 300 mg/kg) on obesity-related traits in C57BL/6J male mice, with a focus on transcriptomic changes in the liver and white adipose tissue (WAT).
View Article and Find Full Text PDFBioData Min
December 2024
School of Computing, Queen's University, 557 Goodwin Hall, 21-25 Union St, Kingston, K7L 2N8, Ontario, Canada.
Background: Epistasis, the phenomenon where the effect of one gene (or variant) is masked or modified by one or more other genes, significantly contributes to the phenotypic variance of complex traits. Traditionally, epistasis has been modeled using the Cartesian epistatic model, a multiplicative approach based on standard statistical regression. However, a recent study investigating epistasis in obesity-related traits has identified potential limitations of the Cartesian epistatic model, revealing that it likely only detects a fraction of the genetic interactions occurring in natural systems.
View Article and Find Full Text PDFMol Ecol
January 2025
CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
J Genet Genomics
November 2024
Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases of Shihezi University, Shihezi, Xinjiang 832000, China. Electronic address:
Int J Ophthalmol
November 2024
Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!