Aqueous zinc (Zn)-ion energy storage system is widely regarded as a promising candidate for future electrochemical energy storage applications but suffers insufficient lifespan and limited operating temperature. To address these issues, we introduce a carbitol additive for a novel hybrid electrolyte to enhance cycling stability and temperature adaptability by optimizing the coordination structure of Zn ion. The modified electrolyte not only restrains the hydrogen evolution, but also promotes a high-orientation Zn deposition and significantly limits the Zn dendrite growth. Taking advantage of improved electrolyte properties, the Zn symmetric cells with 10 % carbitol-modified electrolyte exhibit long-term cycle stability for 5000 h at 25 °C, and 400 h at -10 °C. More notably, the carbitol-modified electrolyte endows a stable reversible capacitance for Zn ion hybrid supercapacitors to be operated at different temperatures. Our work affords a reasonable electrolyte engineering strategy to fabricate a highly stable and low-temperature-tolerant Zn ion storage system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.10.127 | DOI Listing |
J Org Chem
January 2025
Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
Spin labels based on Gd complexes are important tools for the elucidation of the structure, dynamics and interaction of biomolecules by electron paramagnetic resonance (EPR) spectroscopy. Their EPR spectroscopic properties line width and relaxation times influence their performance in a particular application. To be able to apply a complex well-suited for a specific application, a set of Gd complexes with different EPR spectroscopic properties ready-made for spin labeling will be highly useful.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China.
Palladium (Pd) catalysts are promising for electrochemical reduction of CO to CO but often can be deactivated by poisoning owing to the strong affinity of *CO on Pd sites. Theoretical investigations reveal that different configurations of *CO endow specific adsorption energies, thereby dictating the final performances. Here, a regulatory strategy toward *CO absorption configurations is proposed to alleviate CO poisoning by simultaneously incorporating Cu and Zn atoms into ultrathin Pd nanosheets (NSs).
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
The combination of ultralong-acting neuromuscular block and subsequent on-demand rapid reversal may provide prolonged surgeries with improved conditions by omitting continuous or repetitive blocker administration, enabling a more stable and predictable hemodynamic profile and eliminating residual block. For this target, we prepared 19 imidazolium-incorporated tetracationic macrocycles. In vivo studies with rats revealed that one macrocycle (IMC-14) displays extremely high blocking activity.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Flexible memristors are promising candidates for multifunctional neuromorphic computing applications, overcoming the limitations of conventional computing devices. However, unpredictable switching behavior and poor mechanical stability in conventional memristors present significant challenges to achieving device reliability. Here, a reliable and flexible memristor using zirconium-oxo cluster (ZrOOH(OMc)) as the resistive switching layer is demonstrated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, College of Chemistry, 94 Weijin Road, 300071, Tianjin, CHINA.
Cyclopropanes are prevalent in natural products, pharmaceuticals, and bioactive compounds, functioning as a significant structural motif. Although a series of methods have been developed for the construction of the cyclopropane skeleton, the development of a direct and efficient strategy for the rapid synthesis of cyclopropanes from bench-stable starting materials with a broad substrate scope and functional group tolerance remains challenging and highly desirable. Herein, we present an electrochemical method for the direct cyclopropanation of unactivated alkenes using active methylene compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!