The blood-brain barrier (BBB) restricts the access of therapeutic agents to the brain, complicating the treatment of neurological diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), glioma, etc. To overcome this limitation and improve drug delivery to the central nervous system (CNS), the potential of nanocarriers, including lipid-based nanosystems, has been explored. Through active targeting, the surface of the nanocarriers can be modified with ligands that interact with the BBB, enhancing their uptake and penetration across the brain endothelium by different physiological mechanisms, such as receptor- or transporter-mediated transcytosis. This review seeks to provide an overview of active targeting in brain delivery, while highlighting the potential of functionalized lipid nanocarriers to treat brain diseases. Therefore, in the first sections, we discuss the importance of active targeting in CNS drug delivery, present the different ligands commonly used for functionalization, as well as summarize the state of the art of the most recent and relevant studies of surface-modified lipid nanosystems developed for neurological disorders. Lastly, challenges hindering clinical translation are discussed, and critical insights and future perspectives outlined. Although some limitations have been identified, it is expected that in the upcoming years these nanosystems will be an established approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2022.112999 | DOI Listing |
Pharmazie
December 2024
Department of Respiratory Medicine, Fourth Affiliated Hospital, Harbin Medical University Harbin, Heilongjiang, China.
Cigarette smoke extract (CSE)-induced airway mucus hypersecretion and inflammation are prominent features of chronic obstructive pulmonary disease (COPD). As a factor associated with inflammation regulation, T cell immunoglobulin and mucin domain-1 (TIM-1) is found to be involved in various inflammatory disorders such as asthma and COPD. In this study, the GEO database provides two human COPD gene expression datasets (GSE67472, n = 62) along with the relevant controls (n = 43) for differentially expressed gene (DEG) analyses.
View Article and Find Full Text PDFClin Rev Allergy Immunol
January 2025
Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.
View Article and Find Full Text PDFAtten Percept Psychophys
January 2025
Department of Psychology, Senshu University, Kawasaki, Japan.
Clin Pharmacokinet
January 2025
Facultés de Médecine et de Pharmacie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France.
Background And Objective: Limited information is available on the pharmacokinetics of rifampicin (RIF) along with that of its active metabolite, 25-deacetylrifampicin (25-dRIF). This study aimed to analyse the pharmacokinetic data of RIF and 25-dRIF collected in adult patients treated for tuberculosis.
Methods: In adult patients receiving 10 mg/kg of RIF as part of a standard regimen for drug-susceptible pulmonary tuberculosis enrolled in the Opti-4TB study, plasma RIF and 25-dRIF concentrations were measured at various occasions.
Cell Biol Toxicol
January 2025
Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.
Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!