Capsules with bacteria and fungi in distinct compartments: A platform for studying microbes from different kingdoms and their cross-communication.

PLoS One

Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD, United States of America.

Published: November 2022

Recently, we have created 'artificial cells' with an architecture mimicking that of typical eukaryotic cells. Our design uses common biopolymers like alginate and chitosan to create multi-compartment capsules (MCCs) via oil-free microfluidics. MCCs (~ 500 μm in diameter) can be engineered with multiple inner compartments, each with a distinct payload. This mimics the distinct organelles in eukaryotic cells, each of which has unique properties. In this study, we encapsulate microbial cells from two distinct kingdoms - Pseudomonas aeruginosa (bacteria) and Candida albicans (fungi) - in the inner compartments of MCCs. The two microbes are commonly found in biofilms at sites of infection in humans. We first demonstrate that the MCC can serve as a simple platform to observe the comparative growth of the cells in real time. Unlike typical co-culture in solution or on agar plates, the cells can grow in their own compartments without direct physical contact. Moreover, the hydrogel matrix in the compartments mimics the three-dimensional (3-D) environment that cells naturally encounter during their growth. Small molecules added to the solution are shown to permeate through the capsule walls and affect cell growth: for example, cationic surfactants inhibit the fungi but not the bacteria. Conversely, low pH and kanamycin inhibit the bacteria but not the fungi. Also, when the bacteria are present in adjacent compartments, the fungal cells mostly stay in a yeast morphology, meaning as spheroidal cells. In contrast, in the absence of the bacteria, the fungi transition into hyphae, i.e., long multicellular filaments. The inhibition of this morphological switch in fungal cells is shown to be induced by signaling molecules (specifically, the quorum sensing autoinducer-1 or AI-1) secreted by the bacteria. Thus, the MCC platform can also be used to detect cross-kingdom signaling between the compartmentalized microbes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9651590PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277132PLOS

Publication Analysis

Top Keywords

bacteria fungi
12
cells
9
eukaryotic cells
8
inner compartments
8
fungi bacteria
8
fungal cells
8
compartments
6
bacteria
6
fungi
5
capsules bacteria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!