As-synthesized, semiconducting single-walled carbon nanotubes (SWCNTs) are nominally charge neutral. However, ionic surfactants that are commonly used to disperse SWCNTs in solution can lead to significantly charged aggregates adsorbed to the nanotube. Here, electrostatic force microscopy (EFM) was used to characterize the static-charge interactions between individual SWCNTs and the local environment. We report nonuniform spatial charge distributions with highly varying magnitudes ranging between ±15 associated with surfactant coverage on long SWCNTs (>1.5 μm). EFM images acquired after resonant photoexcitation demonstrate charge carrier localization due to electrostatic interactions with charged surfactant aggregates. Charge densities as measured by EFM are used to estimate the depth of this electrostatically induced potential well, calculated to be on the order of hundreds of millielectronvolts, suggesting that surfactant charges heterogeneously covering SWCNTs provide traps for excitons potentially leading to their localization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706551 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.2c02650 | DOI Listing |
Chemistry
January 2025
The University of Electro-Communications: Denki Tsushin Daigaku, Department of Engineering Science, JAPAN.
(6,5)-enriched single-walled carbon nanotubes (SWCNTs) were reductively arylated using sodium naphthalenide and monosubstituted and disubstituted iodobenzene derivatives to control their photoluminescence (PL) properties. In the reactions with substituted iodobenzenes, the degree of functionalization was influenced by the substituents on the aryl groups depending on their position, which allowed us to realize control of the PL intensity. The substituents at the 2-position and methyl groups at the 3,5-positions of the phenyl group respectively increased the E11** PL and E11* PL selectivity at ~1230 and ~1100 nm.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Engineering, Istanbul Technical University, Istanbul 34469, Türkiye.
In this study, a bovine serum albumin (BSA)-coated magnetic single-walled carbon nanotube (mCNT) was synthesized using covalent functionalization. Mitoxantrone (MTO) was chosen as a model drug, and loading/release profiles of mCNTs were evaluated. To synthesize BSA-coated mCNT, 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide and -hydroxysuccinimide were used as cross-linking agents.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China.
Fe-N-C materials are emerging catalysts for replacing precious platinum in the oxygen reduction reaction (ORR) for renewable energy conversion. However, their potential is hindered by sluggish ORR kinetics, leading to a high overpotential and impeding efficient energy conversion. Using iron phthalocyanine (FePc) as a model catalyst, we elucidate how the local strain can enhance the ORR performance of Fe-N-Cs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Advanced Materials and Systems, Sookmyung Women's University, Seoul 04310, Republic of Korea.
Multivalued logic (MVL) systems, in which data are processed with more than two logic values, are considered a viable solution for achieving superior processing efficiency with higher data density and less complicated system complexity without further scaling challenges. Such MVL systems have been conceptually realized by using negative transconductance (NTC) devices whose channels consist of van der Waals (vdW) heterojunctions of low-dimensional semiconductors; however, their circuit operations have not been quite ideal for driving multiple stages in real circuit applications due to reasons such as a reduced output swing and poorly defined logic states. Herein, we demonstrate ternary inverter circuits with near rail-to-rail swing and three distinct logic states by employing vdW p-n heterojunctions of single-walled carbon nanotubes (SWCNT) and MoS where the SWCNT layer completely covers the MoS layer.
View Article and Find Full Text PDFACS Nano
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States.
Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!