Basic principles for biosurfactant-assisted (bio)remediation of soils contaminated by heavy metals and petroleum hydrocarbons - A critical evaluation of the performance of rhamnolipids.

J Hazard Mater

Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland; Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany. Electronic address:

Published: February 2023

Despite the fact that rhamnolipids are among the most studied biosurfactants, there are still several gaps which must be filled. The aim of this review is to emphasize and to indicate which issues should be taken into account in order to achieve efficient rhamnolipids-assisted biodegradation or phytoextraction of soils contaminated by heavy metals and petroleum hydrocarbons without harmful side effects. Four main topics have been elucidated in the review: effective concentration of rhamnolipids in soil, their potential phytotoxicity, susceptibility to biodegradation and interaction with soil microorganisms. The discussed elements are often closely associated and often overlap, thus making the interpretation of research results all the more challenging. Each dedicated section of this review includes a description of potential issues and questions, an explanation of the background and rationale for each problem, analysis of relevant literature reports and a short summary with possible application guidelines. The main conclusion is that there is a necessity to establish regulations regarding effective concentrations for rhamnolipids-assisted remediation of soil. The use of an improper concentration is the direct cause of all the other discussed phenomena.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.130171DOI Listing

Publication Analysis

Top Keywords

soils contaminated
8
contaminated heavy
8
heavy metals
8
metals petroleum
8
petroleum hydrocarbons
8
basic principles
4
principles biosurfactant-assisted
4
biosurfactant-assisted bioremediation
4
bioremediation soils
4
hydrocarbons critical
4

Similar Publications

Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) are commonly found in heavy metal-contaminated environments and form extraradical mycelium (ERM), but knowledge of their ecological functions is limited. In the present study, a soil column was filled with sterilized cadmium (Cd)-contaminated soil and contained an in-growth core for AMF-inoculated maize seedling growth. The in-growth core was static to maintain or rotated to disrupt ERM growth.

View Article and Find Full Text PDF

Enhancement of alfalfa growth resistance by arbuscular mycorrhiza and earthworm in molybdenum-contaminated soils: From the perspective of soil nutrient turnover.

Environ Res

December 2024

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, P. R. China. Electronic address:

Molybdenum (Mo) acts as a crucial nutrient for plant development, yet excessive soil exposure can cause detrimental effects. Molybdenosis symptoms remain subtle in many plants, largely due to the safeguarding functions of soil organisms, the fundamental biological mechanisms lack clarity. In this study, we explored the potential mechanisms for amending Mo-exposed soils with soil microbe-arbuscular mycorrhizal fungi (AMF) and soil fauna, specifically earthworms, to enhance model plant-alfalfa growth resistance through soil nutrient turnover perspectives.

View Article and Find Full Text PDF

Background: Contamination with crude oil and hydrocarbons has become a global threat. Such threats have urged us to invent solutions to deal with this dilemma. However, chemical treatment comes with limited benefits.

View Article and Find Full Text PDF

Arsenic (As) is a non-essential carcinogenic metalloid and an issue of concern for rice crops. This study investigated the effects of sulfur-loaded tea waste biochar (TWB) due to modification with sodium sulfide (SSTWB) or thiourea (TUTWB) on As stress and accumulation in rice plants. The results showed that sulfur-modified TWB improved plant morphology compared to plants grown in As-contaminated soil alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!