Background: Recent technological progress has bolstered efforts to bring personalized medicine from theory into clinical practice. However, progress in areas such as therapeutic drug monitoring (TDM) has remained somewhat stagnant. In drugs with well-known dose-response relationships, TDM can enhance patient outcomes and reduce health care costs. Traditional monitoring methods such as chromatography-based or immunoassay techniques are limited by their higher costs and slow turnaround times, making them unsuitable for real-time or onsite analysis.

Objective: In this work, we propose the use of a fast, direct, and simple approach using Fourier transform infrared spectroscopy (FT-IR) combined with chemometric techniques for the therapeutic monitoring of valproic acid (VPA).

Method: In this context, a database of FT-IR spectra was constructed from human plasma samples containing various concentrations of VPA; these samples were characterized by the reference method (immunoassay technique) to determine the VPA contents. The FT-IR spectra were processed by two chemometric regression methods: partial least-squares regression (PLS) and support vector regression (SVR).

Results: The results provide good evidence for the effectiveness of the combination of FT-IR spectroscopy and SVR modeling for estimating VPA in human plasma. SVR models showed better predictive abilities than PLS models in terms of root-mean-square error of calibration and prediction RMSEC, RMSEP, R2Cal, R2Pred, and residual predictive deviation (RPD).

Conclusions: This analytical tool offers potential for real-time TDM in the clinical setting.

Highlights: FTIR spectroscopy was evaluated for the first time to predict VPA in human plasma for TDM. Two regressions were evaluated to predict VPA in human plasma, and the best-performing model was obtained using nonlinear SVR.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jaoacint/qsac146DOI Listing

Publication Analysis

Top Keywords

human plasma
16
vpa human
12
therapeutic drug
8
drug monitoring
8
monitoring valproic
8
valproic acid
8
ft-ir spectroscopy
8
support vector
8
vector regression
8
ft-ir spectra
8

Similar Publications

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

The case report presents a male patient in his mid-60s with a history of hypertension, benign prostatic hyperplasia and chronic kidney disease (CKD). He presented with gradually increasing serum creatinine levels and hyperglobulinemia, leading to suspicion of multiple myeloma. However, subsequent testing revealed features consistent with systemic lupus erythematosus (SLE) and IgG4-related kidney disease (IgG4-RKD).

View Article and Find Full Text PDF

The pleiotropic effects of PCSK9 in cardiovascular diseases beyond cholesterol metabolism.

Acta Physiol (Oxf)

February 2025

Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.

Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality globally, with elevated low-density lipoprotein cholesterol (LDL-C) levels being a major risk factor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in regulating LDL-C levels by promoting the degradation of hepatic low-density lipoprotein receptors (LDLR) responsible for clearing LDL-C from the circulation. PCSK9 inhibitors are novel lipid-modifying agents that have demonstrated remarkable efficacy in reducing plasma LDL-C levels and decreasing the incidence of CVD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!