Targeted design of porous materials without strong, directional interactions.

Chem Commun (Camb)

Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, L7 3NY, UK.

Published: November 2022

AI Article Synopsis

  • A new porous molecular crystal (TSCl) was synthesized using dichloromethane and water, linked to the creation of tetrakis(4-sulfophenylmethane).
  • Crystal structure prediction (CSP) played a key role in understanding the interactions that lead to the formation of this unique porous structure.
  • Gas sorption tests confirmed TSCl's selective CO adsorption with a high uptake at low temperatures, highlighting CSP's potential in crystal engineering beyond conventional hydrogen bonding.

Article Abstract

A porous molecular crystal (TSCl) was found to crystallise from dichloromethane and water during the synthesis of tetrakis(4-sulfophenylmethane). Crystal structure prediction (CSP) rationalises the driving force behind the formation of this porous TSCl phase and the intermolecular interactions that direct its formation. Gas sorption analysis showed that TSCl is permanently porous with selective adsorption of CO over N, H and CH and a maximum CO uptake of 74 cm g at 195 K. Calculations revealed that TSCl assembles a combination of weak hydrogen bonds and strong dispersion interactions. This illustrates that CSP can underpin approaches to crystal engineering that do not involve more intuitive directional interactions, such as hydrogen bonding.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cc04682bDOI Listing

Publication Analysis

Top Keywords

directional interactions
8
targeted design
4
porous
4
design porous
4
porous materials
4
materials strong
4
strong directional
4
interactions
4
interactions porous
4
porous molecular
4

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Background: In the case of end-stage hallux rigidus, first metatarsophalangeal (MTP) joint arthrodesis is the gold-standard and is traditionally performed via an open approach. However, complications such as nonunion have been reported to be as high as 30%. Recently, there have been reports demonstrating a percutaneous approach to be effective and safe.

View Article and Find Full Text PDF

Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.

View Article and Find Full Text PDF

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

Objective: Post-stroke depression (PSD) affects approximately 40% of stroke survivors, with cognitive deficits being frequently observed. Transcranial Direct Current Stimulation (tDCS) has shown promise in improving cognitive performance in stroke patients. We explored the effects of tDCS on cognitive performance in PSD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!